Debra Weisenstein

Sebastian D. Eastham, Debra K. Weisenstein, and Steven R. H. Barrett. 2014. “Development and evaluation of the unified tropospheric–stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem.” Atmospheric Environment, 89: 52-63. Publisher's Version Abstract

Global chemistry-transport models (CTMs) typically use simplified parameterizations or relaxation to climatology to estimate the chemical behavior of the stratosphere only in the context of its impact on tropospheric chemistry. This limits investigation of stratospheric chemistry and interactions between tropospheric and stratospheric chemistry-transport processes. We incorporate stratospheric chemical and physical processes into the model GEOS-Chem in the form of a unified chemistry extension (UCX). The stratospheric chemistry framework from NASA’s Global Modeling Initiative (GMI) is updated in accordance with JPL 10-06 and combined with GEOS-Chem’s existing widely applied and validated tropospheric chemistry to form a single, unified gas-phase chemistry scheme. Aerosol calculations are extended to include heterogeneous halogen chemistry and the formation, sedimentation and evaporation of polar stratospheric clouds (PSCs) as well as background liquid binary sulfate (LBS) aerosols. The Fast-JX v7.0a photolysis scheme replaces a hybrid of Fast-J and Fast-JX v6.2, allowing photolytic destruction at frequencies relevant to the stratosphere and of species not previously modeled. Finally, new boundary conditions are implemented to cover both surface emissions of new species and mesospheric behavior. Results for four simulation years (2004-2007) are compared to those from the original, tropospheric model and to in situ and satellite-based measurements. We use these comparisons to show that the extended model is capable of modeling stratospheric chemistry efficiently without compromising the accuracy of the model at lower altitudes, perturbing mean OH below 250 hPa by less than 5% while successfully capturing stratospheric behavior not previously captured in GEOS-Chem such as formation and collapse of the Antarctic ozone hole. These extensions (with supporting validation and intercomparison) enable an existing and extensively validated tropospheric CTM to be used to investigate a broader set of atmospheric chemistry problems and leverages GEOS-Chem’s existing tropospheric treatment.

David Keith, Debra Weisenstein, John Dykema, and Frank Keutsch. 12/12/2016. “Stratospheric Solar Geoengineering without Ozone Loss.” PNAS. Publisher's Version Abstract

Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of −1 W⋅m−2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y−1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

Debra Weisenstein

Debra Weisenstein

Senior Researcher, Harvard John A. Paulson School of Engineering and Applied Sciences

Debra Weisenstein is a senior researcher in the Harvard John A. Paulson School of Engineering and Applied Sciences. Her work focuses on modeling stratospheric chemistry and aerosol microphysics with application to solar geoengineering. She developed the AER 2-D chemisry-transport-aerosol model which has been applied to studies of atmospheric sulfur, volcanic eruptions, and aircraft impacts on the atmosphere, as well as to geoengineering by injection of SO2 and H2SO4. Recent work focuses on modeling solid particles with fractal structure for possible geoengineering application. She collaborates with Prof. Thomas Peter at ETH in Zurich and was a lead author of the SPARC Assessment of Stratospheric Aerosol Properties report, published in 2006 by the World Climate Research Program.