This group is a fast-growing team of researchers working at the intersection of climate science and technology with a focus on the science and public policy of solar geoengineering under the leadership of David Keith, Professor of Applied Physics at Harvard’s School of Engineering and Applied Sciences and Professor of Public Policy at the Harvard Kennedy School.

Read more about us

Publications

Featured Publications

Aerosol Dynamics in the Near Field of the SCoPEx Stratospheric Balloon Experiment

C. M. Golja, L. W. Chew, J. A. Dykema, and D. W. Keith. 2021. “Aerosol Dynamics in the Near Field of the SCoPEx Stratospheric Balloon Experiment.” Journal of Geophysical Research. Publisher's VersionAbstract
Stratospheric aerosol injection (SAI) might alleviate some climate risks associated with accumulating greenhouse gases. Reduction of specific process uncertainties relevant to the distribution of aerosol in a turbulent stratospheric wake is necessary to support informed decisions about aircraft deployment of this technology. To predict aerosol size distributions we apply microphysical parameterizations of nucleation, condensation and coagulation to simulate an aerosol plume generated via injection of calcite powder or sulphate into a stratospheric wake with velocity and turbulence simulated by a three‐dimensional (3D) fluid dynamic calculation. We apply the model to predict the aerosol distribution that would be generated by a propeller wake in the Stratospheric Controlled Perturbation Experiment (SCoPEx). We find that injecting 0.1 g s‐1 calcite aerosol produces a nearly monodisperse plume and that at the same injection rate, condensable sulphate aerosol forms particles with average radii of 0.1 µm at 3 km downstream. We test the sensitivity of plume aerosol composition, size, and optical depth to the mass injection rate and injection location. Aerosol size distribution depends more strongly on injection rate than injection configuration. Comparing plume properties with specifications of a typical photometer, we find that plumes could be detected optically as the payload flies under the plume. These findings test the relevance of in situ sampling of aerosol properties by the SCoPEx outdoor experiment to enable quantitative tests of microphysics in a stratospheric plume. Our findings provide a basis for developing predictive models of SAI using aerosols formed in stratospheric aircraft wakes.
Read more

Elicitation of US and Chinese expert judgments show consistent views on solar geoengineering

Zhen Dai, Elizabeth T. Burns, Peter J. Irvine, Dustin H. Tingley, Jianhua Xu, and David W. Keith. 2021. “Elicitation of US and Chinese expert judgments show consistent views on solar geoengineering.” Humanities and Social Sciences Communications, 8, 1. Publisher's VersionAbstract
Expert judgments on solar geoengineering (SG) inform policy decisions and influence public opinions. We performed face-to-face interviews using formal expert elicitation methods with 13 US and 13 Chinese climate experts randomly selected from IPCC authors or supplemented by snowball sampling. We compare their judgments on climate change, SG research, governance, and deployment. In contrast to existing literature that often stress factors that might differentiate China from western democracies on SG, we found few significant differences between quantitative judgments of US and Chinese experts. US and Chinese experts differed on topics, such as desired climate scenario and the preferred venue for international regulation of SG, providing some insight into divergent judgments that might shape future negotiations about SG policy. We also gathered closed-form survey results from 19 experts with >10 publications on SG. Both expert groups supported greatly increased research, recommending SG research funding of ~5% on average (10th–90th percentile range was 1–10%) of climate science budgets compared to actual budgets of <0.3% in 2018. Climate experts chose far less SG deployment in future climate policies than did SG experts.
Read more

Experimental reaction rates constrain estimates of ozone response to calcium carbonate geoengineering

Zhen Dai, Debra K. Weisenstein, Frank N. Keutsch, and David W. Keith. 12/2020. “Experimental reaction rates constrain estimates of ozone response to calcium carbonate geoengineering.” Communications Earth & Environment, 1, 63. Publisher's VersionAbstract
Stratospheric solar geoengineering (SG) would impact ozone by heterogeneous chemistry. Evaluating these risks and methods to reduce them will require both laboratory and modeling work. Prior model-only work showed that CaCO3 particles would reduce, or even reverse ozone depletion. We reduce uncertainties in ozone response to CaCO3 via experimental determination of uptake coefficients and model evaluation. Specifically, we measure uptake coefficients of HCl and HNO3 on CaCO3 as well as HNO3 and ClONO2 on CaCl2 at stratospheric temperatures using a flow tube setup and a flask experiment that determines cumulative long-term uptake of HCl on CaCO3. We find that particle ageing causes significant decreases in uptake coefficients on CaCO3. We model ozone response incorporating the experimental uptake coefficients in the AER-2D model. With our new empirical reaction model, the global mean ozone column is reduced by up to 3%, whereas the previous work predicted up to 27% increase for the same SG scenario. This result is robust under our experimental uncertainty and many other assumptions. We outline systematic uncertainties that remain and provide three examples of experiments that might further reduce uncertainties of CaCO3 SG. Finally, we highlight the importance of the link between experiments and models in studies of SG.
Read more
  •  
  • 1 of 67
  • »
More

Harvard's Solar Geoengineering Research Program

Visit the Website

About David Keith

David Keith has worked near the interface between climate science, energy technology, and public policy for twenty five years. He took first prize in Canada's national physics prize exam, won MIT's prize for excellence in experimental physics, and was one of TIME magazine's Heroes of the Environment 2009.

Read more