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Climate intervention through solar geoengineering (SG) has 
been proposed as a complementary strategy for mitigating 
anthropogenic greenhouse gas-induced warming, particu-

larly when discussing the ambitious climate target set in the Paris 
Agreement1,2. Solar geoengineering and related techniques typically 
use aerosols to counterbalance some of the radiative forcing from 
long-lived greenhouse gases, either by reflecting more shortwave 
solar radiation away from Earth via stratospheric aerosol injec-
tion (SAI)3 or marine sky brightening (MSB; nomenclature in the 
Methods)4,5, for example, or by enhancing Earth’s longwave radia-
tion towards space through cirrus cloud thinning (CCT)5 (strictly 
CCT is not ‘solar’ but hereafter we will refer to all SG-related meth-
ods as SG). Although the number of modelling studies on the 
method and impact of SG technologies (SGs) has increased rapidly 
since Crutzen’s 2006 paper3, and the launch of the Geoengineering 
Model Intercomparison Project (GeoMIP)6 in particular, the major-
ity focused on the physical responses of the atmosphere, ocean and 
cryosphere components of the climate system to these large-scale 
interventions7,8. The impact of SG on terrestrial ecosystems and 
agriculture remains poorly understood9. Only a few modelling stud-
ies have so far investigated the regional10–13 or global14,15 impacts of 
a specific SG such as SAI on the yield of certain crops. Inconsistent 
findings on the mechanisms and effectiveness of SAI (for example 
the roles of temperature and radiation) on global crop yield have 
emerged in the literature14,15, although these studies applied notably 
different approaches. A global assessment of agricultural responses 
to multiple SG methods, and a direct comparison of the agricultural 
impacts of SGs and CO2 emissions reduction (ER) under similar 
radiative forcing pathways, were both needed.

We took a stepwise approach (Fig. 1a) to understand crop yield 
responses to our selected scenarios. We first implemented three 

SGs (SAI, MSB, CCT) on top of Representative Concentration 
Pathway 8.5 (RCP8.5) to achieve the same net reduction in radia-
tive forcing as RCP4.5, which is then referred to as our ER scenario, 
using the NorESM1-ME climate model16. Each of the three SG 
methods has multiple design choices17 that could result in differ-
ent climate responses, but here we used one instance of an ideal-
ized experiment for SAI, MSB and CCT, respectively, and focused 
on cross-SG-method comparisons in our sensitivity analysis. We 
then applied the climate scenarios to the CLM5 process-based 
global gridded crop model18 to determine the impact of SGs and 
ER on the yield of six major crops (maize, sugarcane, wheat, rice, 
soy and cotton) that produce food, bioenergy and fibre. For crop 
yield modelling, we note potential uncertainties with respect to 
changing land-use pathways under different emission scenarios19. 
According to a scenario matrix framework and the standard con-
figuration in ScenarioMIP20, we combined the RCP8.5 climate with 
Shared Socioeconomic Pathway 5 (SSP5) land use as the default 
configuration for RCP8.5. All of the SGs (SAI, MSB and CCT) 
and ER (represented by combining RCP4.5 climate with SSP5 land 
use, that is, RCP4.5(SSP5LU)) scenarios were simulated with the same 
SSP5 land use as in RCP8.5 to exclude the effect of land-use change 
(LUC) in comparisons between SGs and ER (Supplementary Table 
1). We performed additional simulations that apply combinations 
of climate, CO2 and land use to isolate the physiological effect of 
CO2 (with a special case of RCP8.5(45CO2) that combines RCP8.5 cli-
mate with RCP4.5 CO2) and decompose climate-only effects (Fig. 
1a), and to assess potential uncertainties associated with changing 
land use for ER (for example, from SSP5 to SSP2; Supplementary 
Sections 1 and 2).

Our results show that without mitigation, annual average warm-
ing over land and growing season warming over cropping areas 
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reach 5.4 °C and 6 °C, respectively, above pre-industrial levels by the 
end of the twenty-first century (2075–2099 mean; Fig. 1b), within 
the range of projections of the Fifth Assessment Report (AR5) of 
the IPCC21. Simulations show substantial changes in crop yields 

in response to changes in climate, CO2 concentration, land-use 
and crop management trends under the different scenarios (global 
trends in Fig. 1f and crop-specific trends in Supplementary Fig. 
1). We validated CLM5 modelled crop yields during the period 
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Fig. 1 | Methodology and global summary of key model variables. a, Experimental design of SGs and ER as alternative pathways to offset the 
anthropogenic radiative forcing from RCP8.5 down to RCP4.5 (top) and steps of climate and crop simulations and statistical analysis (bottom). All 
together, five climate simulations and seven crop simulations were performed (Supplementary Table 1). The statistical analysis focused on quantifying 
the partial and total climate effects under SGs and ER (compared to RCP8.5) by multiple linear regression (MLR). A special case of crop simulation 
RCP8.5(45CO2) was designed by combining RCP8.5 climate with RCP4.5 CO2 to isolate the CO2 effect for ER (see details in the Methods). The ER experiment 
RCP4.5(SSP5LU) used RCP4.5 climate and CO2 and SSP5 land use. The comparison between RCP4.5(SSP5LU) and RCP4.5 (with SSP2 land use) was only meant 
to isolate potential LUC effects for ER but was not considered by SGs (see Sections 1 and 2 in the Supplementary Information). b, Air temperature time 
series (5-yr running means) of the global annual mean temperature over all of the land surface (left) and the growing season mean over crop areas only 
(right) simulated by NorESM1-ME. Dashed lines are pre-industrial (1850–1879 mean) values. c, Time series (5-yr running means) of global crop-area 
weighted-average growing season direct (left) and diffuse (right) solar radiation (in the visible band 0.3–0.7 μm only) simulated by NorESM1-ME.  
d, Time series (5-yr running means) of global crop-area weighted-average growing season precipitation (left) and relative humidity (right) simulated by 
NorESM1-ME. e, Annual total crop area (top), nitrogen fertilization (middle) and irrigation fraction (bottom) under land-use pathways SSP2 and SSP5.  
f, CLM5 simulated annual global crop yield (5-yr running means) in different experiments shown in Supplementary Table 1.
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2006–2018 with FAOSTAT data22, which showed reasonable fidel-
ity in simulated levels of global total production and average yields 
(Fig. 2). More detailed global and regional evaluation of CLM5 crop 
simulations can be found in Lombardozzi et al.18.

We quantified the relative effects of surface air temperature, 
direct and diffuse solar radiation, precipitation and relative humid-
ity on each crop type under each of the SG and ER scenarios com-
pared with RCP8.5 by conducting multiple linear regression (MLR) 
for each grid cell and each crop type on 2020–2099 time-series data. 
We found the mean partial and total climate effects for the globe, 
and then used a Monte Carlo or bootstrap approach23 to resample 
and derive a confidence interval for each MLR coefficient (Fig. 
1a; details in the Methods). To estimate the net impact of ER, the 
climate-only effects were merged with the effect of reduced CO2 
from RCP8.5 to RCP4.5. Finally, we compared SGs and ER to assess 
the mechanisms and effectiveness of the different scenarios for agri-
cultural production in the twenty-first century.

Partial and total climate effects
The different cooling strategies result in spatially and temporally 
heterogeneous impacts on crop yield in the twenty-first century 
(Figs. 3–5). Reduced air temperature has consistently strong posi-
tive effect on global average yield under all scenarios (Fig. 3). In 
contrast to the similar temperature effects, the different scenarios 
offer distinct radiation and moisture-related effects and trends 
across regions and over time. The moisture effect, dominated by 
changes in relative humidity rather than precipitation, drives much 
of the interannual variability in the total climate effect. Remarkably, 
in ER it reaches a comparable level to the temperature effect after 
year 2050 (Fig. 3d). The net effect of relative humidity is closely 
linked to the vapour pressure deficit, which is important for crop 
growth and yield24,25. There are simultaneous drops in precipitation 
and relative humidity around the year 2067 under RCP8.5, indi-
cating a dry period (Fig. 1d). The SGs and ER scenarios all have 
increased relative humidity compared with RCP8.5 around 2067. 
Increased relative humidity reduces the vapour pressure deficit 
and alleviates water stress, which explains the synchronous peak 
of the relative humidity effect under all scenarios during this dry 
period (Fig. 3a–d). The net effect of altered radiation regimes on 
crop yield is relatively small in all scenarios, owing to the opposing 

changes in the direct and diffuse radiation components. Under SAI, 
the positive effect of increased diffuse radiation on yields largely 
compensates for the loss caused by reduced direct sunlight, and in 
some cases contributes to increased yields (Fig. 3a,e). In CCT, con-
trastingly, the slight increase in direct radiation versus decrease in 
diffuse radiation from the reduced layer of thin ice clouds in the 
upper troposphere brings a marginal net increase in global yields 
(Fig. 3c,e). MSB shows weaker radiation effects than SAI (Fig. 3b,e), 
given that the aerosol forcing is applied only over the oceans.

Crop-specific analysis shows diverse responses of the six crops 
to changes in different climate variables. The yield increments of 
most crops are primarily driven by cooling (Fig. 4). The excep-
tions are wheat and rice, which are particularly insensitive to tem-
perature (Supplementary Fig. 1) yet respond strongly to changes in 
radiation and relative humidity under ER, SAI and MSB when not 
irrigated (Fig. 4a). Separating irrigated and rainfed crops shows that 
the effects of temperature and radiation are dependent on water 
stress levels. Eliminating water stress through irrigation dampens 
the effects of temperature and radiation for most crops, and for 
some crops reduces the total effect by more than 50% (Fig. 4a,b). 
Most rainfed crops show significant responses to increased relative 
humidity, with larger increases under ER than SGs (Figs. 3 and 4a). 
CCT shows a muted crop relative humidity response (Figs. 3e and 
4a) because it causes only small changes in global average humidity 
compared to RCP8.5 after 2075 (Fig. 1d). Precipitation exerts mini-
mal effects on most rainfed crops after accounting for temperature, 
radiation and relative humidity effects, which holds even if relative 
humidity is removed from the regression (equation (1)). The minor 
role of precipitation reflects the complexity of crop water availability 
and use due to variable runoff, drainage and evaporation26. As rela-
tive humidity regulates evaporation and plant water use through sto-
matal control, increased relative humidity alleviates water stress for 
rainfed crops at a given temperature; lower relative humidity indi-
cates a higher vapour pressure deficit, which may trigger stomatal 
closure25,27,28 and reduces crop growth and yield26. Our finding of the 
dominant role of relative humidity rather than precipitation on crop 
productivity is consistent with a previous SAI study that considered 
both variables11 (other SAI studies neglected relative humidity10,14,15) 
and with other studies on the role of relative humidity or the vapour 
pressure deficit on vegetation and crop productivity24,25,27.

ba

1,000

Maize

Wheat Rice Wheat Rice

CottonSoy CottonSoy

2006 2012 2018 2006 2012 2018 2006 2012 2018 2006 2012 2018

MaizeSugarcane Sugarcane

5.5

3.5

3.0

2.5

Y
ie

ld
 (

t h
a–1

)
Y

ie
ld

 (
t h

a–1
)

Y
ie

ld
 (

t h
a–1

)

Y
ie

ld
 (

t h
a–1

)
Y

ie
ld

 (
t h

a–1
)

Y
ie

ld
 (

t h
a–1

)

2.0

3.5

3.0

2.5

2.0

7.0

6.5

6.0

5.5

5.0

4.5

4.0

5.5

5.0

4.5

4.0

1.5

1.0

0.5

0

400

1,000
800
600

200
0

800
600

800
600
400

400
200

0

400
200

0

P
ro

du
ct

io
n 

(M
t y

r–1
)

P
ro

du
ct

io
n 

(M
t y

r–1
)

P
ro

du
ct

io
n 

(M
t y

r–1
)

P
ro

du
ct

io
n 

(M
t y

r–1
)

P
ro

du
ct

io
n 

(M
t y

r–1
)

P
ro

du
ct

io
n 

(M
t y

r–1
)

200

FAO CLM5 FAO CLM5

150
100

200

A
rea (M

ha)
A

rea (M
ha)

A
rea (M

ha)

A
rea (M

ha)
A

rea (M
ha)

A
rea (M

ha)

150
100

300
250
200

150
100
50

100
50
0

100
50
0

Year Year Year Year

Fig. 2 | Validation of CLM simulated crop production and yields for the recent past with FAO data. a, Comparison of annual production and cultivation 
area for the six crops between CLM5 and FAO data for the period 2006–2018. b, Model–data comparison of per-hectare yields.
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Overall, the methods that promote cooling and at the same time 
alleviate water stress, which occurs in Central America and South 
America in most scenarios (Supplementary Fig. 2), will probably 
result in the highest yield gains, particularly for maize, soy and sug-
arcane in the Global South (Fig. 5 and Extended Data Figs. 1 and 
2). Globally, higher relative humidity increases yields by ~3% under 
the SGs and 8% under ER (2075–2099 mean). By comparing the 
different SGs and ER, our results suggest that evaluating climate 
impacts on water availability and agricultural productivity should 
not focus only on precipitation, but instead on the balance of water 
input and water loss. Taking relative humidity into account forces a 
re-evaluation of previous assessments that SAI would have a nega-
tive impact on crop yield due to reduced precipitation7,10; we found 

little impact of precipitation reduction in India and China, and even 
yield increases in South America.

Reduced CO2 fertilization under ER
The combined cooler temperatures and higher humidity under ER 
(Fig. 1) would lead to increased global yields compared with the SG 
scenarios if one neglects the impact of CO2 fertilization (that is, RCP
4.5(SSP5LU) − RCP8.5(45CO2)). However, the reduced crop yields because 
of lower CO2 concentrations under ER outweigh the temperature 
and humidity benefits regionally (Extended Data Fig. 1d) and glob-
ally (Figs. 3 and 4) for most C3 crops, resulting in a global marginal 
loss of yield by −5% during 2075–2099 (RCP4.5(SSP5LU) – RCP8.5; Fig. 
3e and Supplementary Table 2). Our regression analysis shows that 
doubling CO2 concentration from 380 to 760 ppm while other cli-
mate variables remain the same as RCP8.5 increases global yields by 
9%, 16%, 20%, 25% and 31% for maize, sugarcane, rice, cotton and 
wheat, respectively, and up to 75% for soy (Methods and Extended 
Data Fig. 3). These CO2 fertilization factors, except for soy, are very 
similar to those used in the DSSAT model and related SG studies10,14 
and those observed in the Free-Air CO2 Enrichment (FACE) experi-
ments (per 200 ppm CO2 increment)29,30. Although elevated CO2 can 
stimulate soy’s photosynthetic capacity by 60–80% as it is not lim-
ited by nitrogen, several plant-level physiological feedbacks limit 
soy’s investment for reproduction and thus reduce the yield sensitiv-
ity31, but this mechanism is not included in CLM5. Halving the yield 
response of soy to CO2 would make it closer to observations and 
other crops (Extended Data Fig. 3) but does not change our conclu-
sion on the comparative effects of ER and SG. The higher sensitivity 
of C3 crops (soy, wheat, rice and cotton) to CO2 concentrations than 
C4 crops (maize and sugarcane) is consistent with observations32, 
although notable spatial heterogeneity exists even for a given crop 
type (Extended Data Figs. 1 and 2), which is probably related to 
changing soil nutrient and moisture conditions33. A comparison 
of irrigated and rainfed crops reveals that eliminating water stress 
via irrigation reduces the CO2 effect for most crops (Fig. 4); this 
is related to the role of elevated CO2 in improving plant water-use 
efficiency (and vice versa) and consistent with observations of the 
effect of CO2 on crops decreasing with higher water availability30.

Our quantitative analysis shows that the reduced CO2 fertiliza-
tion under ER undermines its cooling and humidity benefits, mak-
ing SGs robustly more effective at increasing global yields (11%, 9% 
and 11% for SAI, MSB and CCT, respectively, during the period 
2075–2099; Fig. 3e and Supplementary Table 2), although they have 
distinct mechanisms.

Limitations and uncertainties
Our results are only as good as our assumptions. The use of any 
SG technology would entail many design choices that would shape 
the spatial and temporal distribution of radiative forcing, along 
with many of its side effects17. The spatial distribution of sensitivity 
to MSB and CCT interventions in particular depends on aerosol–
cloud interactions that are poorly constrained by observations34. 
The meridional distribution of SAI is a design choice with impor-
tant consequences for hydrology35.

NorESM1-ME showed satisfactory performance on climate 
projections in CMIP536 and GeoMIP537 and CLM5 has also been 
rigorously evaluated18,38,39. Nevertheless, the absolute prediction of 
future crop yields is hindered by uncertainties in estimating future 
climates or in the forcing dataset40, in the crop model parameteriza-
tions18 and in assumptions regarding country-specific differences 
in agricultural practice and adaptation41. The CLM5 crop model 
needs improvements in allocation and temperature-triggered phe-
nology, as well as biological nitrogen fixation for soy18, and can be 
further improved towards better representation of crop response 
to extreme weather events42 and to CO2 fertilization. Lombardozzi 
et al.18 showed that the CLM5 simulated crop yield response to CO2 
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enrichment was nearly double observations from FACE experi-
ments29 and the higher responses of irrigated crops than rainfed 
crops was the opposite of observations. But our independent evalu-
ation of CLM5 against observations shows reasonable CO2 effects 
for most crops (except for soy) whether irrigated or not. There are 
several reasons for this difference, including different forcing data 
and different climate contexts of evaluation: Lombardozzi et al.18 
used the GSWP3 forcing for a historical scenario (added 200 ppm 
CO2 from 1990 to 2010 while other climate variables remained 
the same), whereas our simulations used coupled model forc-
ing for future scenarios. Moreover, we found abnormal sub-daily 
covariance of surface air temperature and relative humidity in 
the GSWP3 dataset resulting in substantially higher moist heat 
stress (measured by wet-bulb temperature43) for tropical, subtropi-
cal and some mid-latitude regions than several other reanalysis 
datasets (not presented here). The abnormal forcing data used 
in Lombardozzi et al.18 could affect the energy and water cycle 
in CLM540 and contribute to the differences in simulated yield 
responses to CO2 compared with our crop simulations, which are 
more consistent with observations. In CMIP536 coupled simula-
tions, the CLM model showed a weaker land carbon response to 
CO2 than other land surface schemes, and CLM5 has an improved 
response to CO2 compared with older versions of CLM44.

Could our model underestimate the effect of dimming for SAI? 
One must consider the radiative properties of aerosols when assess-
ing the impact of SAI. The same increase in stratospheric aerosol 
optical depth (SAOD) could produce different amounts of down-
scattering depending on the aerosol size distribution. All else equal, 

a higher diffuse radiation fraction enhances canopy absorption 
of photosynthetic active radiation45 and carbon uptake in forests 
and croplands46, and also promotes crop yields due to enhanced 
radiation-use efficiency47. Thus, per unit increase in SAOD, the SAI 
with relatively more downscattering aerosols and a higher propor-
tional increase in diffuse radiation should have larger yields. Proctor 
et al.15 examined observations of SAOD and crop yields, finding a 
strong net negative insolation effect offsetting the positive cooling 
effect of SAI on crop yields. Their study rested on two important 
assumptions: (1) a homogeneous linear insolation effect of SAOD 
taken from the Pinatubo eruption (which had less downscattering 
than other volcanic eruptions such as the El Chichón eruption15, 
and less than our model SAI experiment); (2) their reference sce-
nario was RCP4.5 instead of RCP8.5, and thus their cooling effect 
of SAI was weaker than our case. Our sensitivity analysis of mod-
elled crop responses to radiative changes (Extended Data Fig. 4) 
showed that the negative effect of reduced direct radiation could 
overtake the positive diffuse radiation effect if the direct and dif-
fuse components decrease (for example, −20%) and increase (for 
example, +20%) proportionally. When applying our MLR coeffi-
cients to volcanic-induced changes in direct and diffuse radiation 
after the Pinatubo eruption (−21% direct and +20% diffuse, from 
Proctor et al.15), we found similar net negative insolation effects on 
maize (−8.9%), rice (−6.7%), soy (−3.6%) and wheat (−2.7%) to 
those shown in fig. 3 of Proctor et al.15. In our SAI experiment, the 
non-proportional opposing changes in direct (−11 W m−2 or −12%) 
and diffuse (+7 W m−2 or +20%, 2075–2099 mean) radiation rela-
tive to RCP8.5 (Fig. 1c) indicate more downscattering, resulting in 
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negligible net insolation effects on most crops (Fig. 4), although 
small regional variations exist (Extended Data Figs. 1 and 2). We 
also found that the effects of opposing changes in direct and dif-
fuse radiation largely would cancel out each other in MSB and CCT 
scenarios. Therefore, the difference between our results and those of 
Proctor et al.15 is not due to differences in crop sensitivity to the radi-
ative changes in CLM5 versus observations, but is instead mainly 
due to different radiative changes in our SG experiments from those 
after the Pinatubo eruption. Our study highlights the importance 
of optimizing the aerosol particle size distribution. Given that the 
increase in diffuse light from SAI is somewhat adjustable through 
design choices48, the impacts of a particular volcanic eruption are a 
limited analogue for SAI deployment.

Besides the physiological responses of crops to climate and CO2, 
agricultural management such as irrigation and nitrogen fertiliza-
tion are known to impact crop productivity49, but have not been fully 
considered in previous SG studies. Our goal was to isolate the effect 
of ER (climate and CO2 only) on crop yields. But ER will probably be 
linked to changes in land use, although future land-use and agricul-
tural practice are hard to predict under any mitigation scenario. We 
examined the potential importance of LUC by adopting the IPCC 
standard, in which RCP8.5 is associated with SSP5 and RCP4.5 with 
SSP220. Under these conditions, the relative advantage of SGs over 
ER in terms of effect on global average yields (Supplementary Fig. 
3a) and on global total production (Supplementary Table 2) become 
smaller but still robust. This is mainly due to higher nitrogen fer-
tilizer use in SSP2 than SSP5 (Fig. 1e) to balance the demands for 
food, feed and bioenergy production with limited land area avail-
able for agriculture50, which largely compensates for the weaker CO2 
fertilization effect in ER for most crops (Supplementary Fig. 3b,c). 
In our LUC analysis, the yields of most crops except soy and cotton 

were sensitive to increased nitrogen fertilizer usage (Supplementary 
Fig. 4). Other confounding factors in crop responses to LUC include 
the effective climate shift caused by changing the spatial distribu-
tions of crops from SSP5 to SSP2 (Supplementary Figs. 5 and 6) 
and changing the irrigated fraction of each crop type (Fig. 1e and 
Supplementary Figs. 7 and 8). The LUC analysis implies that the 
advantage of SGs over ER depends on the assumption that their use 
is not associated with other management or technological changes 
that might increase or reduce crop yields.

Conclusions
Cooling is the primary driver of increases in crop yields under both 
SG and ER relative to RCP8.5. An important secondary driver is the 
interannual variability in relative humidity under different scenar-
ios. The strong cooling and humidity benefits under ER are coun-
teracted by its reduced CO2 fertilization, leading to reduced yields 
compared with the SGs. The net impact of changes in direct and 
diffuse radiation is small under all scenarios. Overall yields in the 
Global South benefit consistently from all scenarios, particularly for 
maize, soy and sugarcane, whereas wheat and rice are less sensitive 
to the cooling induced by SGs or ER in general.

Our conclusions depend on other unaddressed uncertainties in 
the models. Future efforts could extend this assessment by using 
different climate and crop models and forcing datasets. Climate 
mitigation ultimately depends on synergistic efforts from all 
social-economic sectors, considering the advantages of multiple 
solutions and their potential risks. Policymakers should seek a bal-
anced approach to sustaining global production of food, bioenergy 
and fibre, considering the various effects of different mechanisms 
offered by SGs and ER in regulating the carbon, water and nutrient 
cycles in agricultural systems.
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Methods
Among the GeoMIP5 models, the three SGs (SAI, MSB, CCT) were simulated 
consistently only in the Norwegian Earth System Model version 1 (NorESM1-ME), 
providing a unique experiment set for comparing multiple SG methods in this 
study. Even the current GeoMIP6 does not have consistently designed experiments 
for SAI, MSB and CCT like those done in NorESM1-ME. The general climate 
features under three SGs, together with RCP4.5 and RCP8.5, have been thoroughly 
analysed in previous studies5,8,51. Details of SG implementations can be found 
in Muri et al.5. In the MSB experiment, sea salt emissions were increased in 
both clear-sky and cloudy regions to actively draw on the direct effect of sea salt 
aerosols in addition to the indirect effect through marine cloud processes, which 
is thus referred to as marine sky brightening instead of more commonly studied 
marine cloud brightening1,4. We note that each SG method itself has multiple 
design choices that could result in different climate and crop yield responses. Such 
intramethod variations for a specific SG technique is beyond the scope of this study 
and we focused on cross-SG-method comparison for our yield impact analysis. 
Here we reran these simulations with the output of high-frequency (1 h to 3 h 
intervals) coupler history data to force the crop model. We chose the Community 
Land Model version 5 (CLM5) as the crop model because CLM4 (within 
NorESM1-ME) does not have the prognostic crop types required for this study. 
CLM5 is a global land model that represents changing distributions of multiple 
crop types and management through time18. This enabled us to simulate transient 
yields of the six common crops under different climate and land-use scenarios.

Model experiments. We used the fully coupled emission-driven NorESM1-ME 
climate model to simulate the three SG scenarios (SAI, MSB and CCT) from 2020–
2099, as well as two reference climate scenarios (RCP4.5 and RCP8.5) from 2006–
2099 at 1.9° latitude × 2.5° longitude resolution. The SAI, MSB and CCT schemes 
were implemented on top of an RCP8.5 baseline in a consistent manner, such that 
the change in radiative forcing in RCP8.5 was reduced to that comparable to the 
RCP4.5 scenario (ER) during the period 2020–2099. The NorESM1-ME coupler 
history data for these five climate scenarios were downscaled to 0.9° latitude × 1.25° 
longitude resolution and then used as meteorological forcing to drive CLM5 with 
prognostic crops (CLM5-crop). CLM5-crop represented the growth, yield and 
agricultural management of six major crops: maize, wheat, rice, soy, sugarcane 
and cotton. Each crop was split into irrigated and rainfed subtypes, varying by 
region. Soy and maize also have temperate and tropical cultivars, which were 
merged in the post-processing before the analysis. The Land-Use Harmonization 
(LUH2) transient land-cover data52 provided yearly surface boundary conditions 
of SSP2 and SSP5 scenarios at 0.9° latitude × 1.25° longitude resolution. All crop 
simulations of SGs and ER used the SSP5 land use as in RCP8.5 to facilitate 
interscenario comparison for quantifying the effects of changes in different climate 
variables on crop yields. We also set up two offline crop simulations: one combined 
RCP8.5 climate and RCP4.5 atmospheric CO2 concentrations to isolate CO2 effects, 
and another combined RCP4.5 climate and SSP2 land use to represent a scenario in 
which ER is associated with changing land use and related effects (compared with 
RCP8.5). We conducted a total of seven CLM5 crop simulation experiments, as 
summarized in Supplementary Table 1, which output yield data for each of the six 
crop types and for rainfed and irrigated subtypes separately.

Crop model evaluation. CLM5 simulated crop production and per hectare yields 
were compared with FAOSTAT data22 from 2006 to 2018 (Fig. 2). The FAO crop 
production quantities were first converted to dry matter using crop-specific 
dry-to-fresh weight ratios53. Sugarcane yields were expressed as the amount of 
sucrose after dividing FAO cane yields by a tonnes cane per tonne sugar ratio of 
8. Cotton yields represent cotton lint production divided by its harvested area. 
CLM5 modelled crop harvest amounts (in gC m−2) under RCP8.5 from 2006–2018 
were converted to dry matter using a carbon-to-dry-weight ratio of 0.45 and a 
harvest efficiency of 85% according to the CLM5 tech note (https://escomp.github.
io/ctsm-docs/doc/build/html/tech_note/). Overall, the cumulative production 
(Mt yr−1) simulated for most crops was within ±20% of the FAO data, with the 
exception of rice, for which the overestimation exceeded 30%. Biases existed in 
the crop cultivation area of SSP5 land-use time-series data for years 2006–2018 
compared with the harvested area of FAOSTAT, especially for wheat and cotton, 
although their simulated productions were close to observation (Fig. 2a). Overall, 
the simulated yield per hectare aligned reasonably well with FAO data (Fig. 2b). 
For soy and rice, the overestimation was less than 20% in the validation period, 
and for maize, wheat and sugarcane the underestimations were less than 12%. The 
larger overestimation for the cotton yield (80%) was due to its smaller cultivation 
area but similar simulated production in CLM5 compared with FAO records.

Decomposing climate effects per crop type. We used MLR for each 0.9° × 1.25° 
grid cell and each crop type to determine how SG- or ER-induced changes in 
different climate variables contributed to yield change with reference to RCP8.5 
during the intervention period 2020–2099:

log (Yi) − log (Yc) = β0 + βi (Xi − Xc) + ϵ (1)
where Y is the CLM5 modelled yield, β is a vector of coefficients (β0 for the intercept) 
and X is a vector of explanatory variables including surface air temperature (T), 

direct solar (RD) and diffuse (RI) radiation, precipitation (P) and relative humidity 
(RH), all growing season means based on each crop’s planting dates. ε is the residual 
error for any factors not captured by the explanatory variables. Subscript i indicates 
one of the SGs (SAI, MSB, CCT) or ER (RCP4.5(SSP5LU)) simulations and c indicates 
the control simulation, which is RCP8.5 for the SGs but RCP8.5(45CO2) for the ER, 
such that all scenarios have the same land-use and CO2 pathways to decompose 
climate-only effects. We focused on the transient effects of changes in climate due to 
SG or ER on yield in relative terms, ( log (Yi) − log (Yc) = log

(

Yi
Yc

)

, because yields 
followed a log-normal distribution54. In this way, our statistical analyses focused on 
the relative impacts of per unit change in climate variables on each crop no matter 
what the base yields were across grid cells and regions. We tested the sensitivity of 
irrigated crops to P and RH and found no significant effects, because irrigated crops 
received adequate water to reduce water stress every day in the CLM5 (applying 
unlimited water to offset the soil moisture deficit of the irrigated crop columns 
at 6:00 local time). Thus, for irrigated crops, the terms for moisture (P, RH) were 
excluded from the regression.

We conducted the MLR for each crop using equation (1) at each grid cell if 
the specific crop’s cultivation area exceeded 1,000 ha in that cell for more than 
60 yr between 2020 and 2099 (that is, 6,641 unique grid cells contributing to 
23,928 crop-grid specific regressions, with each MLR based on a one-dimensional 
time series of 60 ≤ n ≤ 80). Although land-use data were identical between the 
experimental (i) and control (c) simulations, due to crop distribution changes 
across years, some grid cells that did not meet the above criteria were excluded 
from the MLR for each specific crop. Grid cells with crop failures (zero or small 
yield values) in some years were set with a minimal yield for each crop type 
according to its 5th global percentile. The average crop failure rates were 3.5% for 
RCP8.5, 3.7% for RCP4.5, 3.5% for SAI, 3.5% for MSB and 3.4% for CCT. Setting 
a minimal yield was not only intended to ensure valid values of log(yield) but 
also to include crop failure related to extreme events. We checked the variance 
inflation factor (VIF) for multicollinearity among independent variables. The 
majority of grid-cell-level MLRs (98%) had VIF < 10 (low multicollinearity) for all 
independent variables. Removing the 2% grid cells with VIF > 10 did not affect the 
predicted relative contribution of partial climate effects, but would have slightly 
biased the MLR-predicted total effect compared with the original CLM5 modelled 
global average yield change. Thus, all the grid-cell-level regressions were included 
in the final analysis. We tested interaction effects between T and RH and between 
RH and P in the MLR. The Akaike information criterion (AIC) score showed that 
only one interaction term between T and RH improved the model fit slightly, but 
was only significant for sugarcane under SAI (Extended Data Fig. 4). RH and P had 
no obvious interaction effect. We also tested for nonlinearity using the generalized 
additive model with cubic splines for T and RH, which allowed for an estimation of 
flexible responses. The generalized additive model predicted that global partial and 
total effects did not improve over those of MLR (Supplementary Fig. 9).

Isolating CO2 effect for ER. CLM5 simulates the enhancement effect of rising 
atmospheric CO2 concentration on vegetation productivity through multiple 
CO2-regulated processes in leaf photosynthesis for C3 plants55 and C4 plants56 and 
stomatal conductance57. To isolate and quantify the CO2 fertilization effect for 
different crops in CLM5, an idealized scenario RCP8.5(45CO2) was designed that 
could represent a global warming scenario caused by greenhouse gases other 
than CO2 that do not fertilize the vegetation growth (such as methane), while 
CO2 emission was restrained or reduced. Through regression analysis based 
on RCP8.5 − RCP8.5(45CO2), the CO2 fertilization effect was largely linear and 
exhibited a tendency towards acclimation when the CO2 level was high (Extended 
Data Fig. 3). Thus, both linear and quadratic terms were used for CO2 in the 
regression. The quadratic function estimated a hyperbolic response of crop yield 
to CO2 enrichment, consistent with findings from FACE experiments58. The CO2 
regression coefficients for different crops were then compared with observations or 
other models (details in the main text).

The isolated climate-only effects (change in log yield based on 
RCP4.5(SSP5LU) − RCP8.5(45CO2)) and the effect of reduced CO2 effect under ER 
(change in log yield based on RCP8.5(45CO2) − RCP8.5) were then merged for 
each crop at each grid cell to estimate the total effect of ER (equivalent to 
RCP4.5(SSP5LU) − RCP8.5 on a log scale). The partial and total effects of ER were then 
aggregated to regional or global average effects (and translated from a log scale to 
percentage effect) with the following procedure.

Resampling and aggregation. After decomposing the climate effects for SGs, and 
climate and CO2 effects for ER per grid cell and finding the their global or regional 
means, we took a Monte Carlo or bootstrap approach (similar to Tai et al.23) to 
resampling the statistical predictions of partial and total effects at all participating 
grid cells for each crop 1,000 times to estimate their probability distribution for a 
region or the globe in each year under each scenario. At each time of resampling, 
a weighted-average method was applied to aggregate the grid-cell-level log effects 
(individual and compound effects of T, RD, RI, P and RH for SG or ER, and CO2 
for ER) per year to a region or the globe for each crop type using its crop area in 
each specific grid cell as the weight. The aggregated partial and total effects on a 
natural log scale were then translated to percentage effects per crop. The mean 

Nature Food | VOL 2 | May 2021 | 373–381 | www.nature.com/natfood 379

https://escomp.github.io/ctsm-docs/doc/build/html/tech_note/
https://escomp.github.io/ctsm-docs/doc/build/html/tech_note/
http://www.nature.com/natfood


Articles NaTURE FOOD

and confidence interval of the individual effects of T, RD, RI, P and RH, their 
combinations (for example, RD + RI for radiation, P + RH for moisture) and the 
total effect on each crop were estimated from the resampling. Note that taking a 
different procedure, for example, translating from a log scale to per cent effect per 
grid cell before resampling and aggregation would bias the partial climate effects 
because exp

(

∑

log
(

Yi
Yc

))

̸=
∑ Yi

Yc
.

To estimate global or regional average effects across all crop types, we 
weight-averaged the crop-specific percentage effects from the above steps using the 
product of the crop area and base yield of each crop as the weight, which takes into 
account the notable variations in base yield, as well as plot size across samples of 
different crop types (Supplementary Fig. 1). The total effect on the yields estimated 
from the above statistical prediction of the MLR, resampling and aggregation 
steps was also compared with the CLM modelled total effect (percentage 
change in global yield) under each SG (based on SAI/MSB/CCT – RCP8.5) or 
ER (RCP4.5(SSP5LU) – RCP8.5) to validate the statistical procedure. The difference 
between the MLR estimated total effect and CLM5 modelled total effect indicated 
the residual errors (Figs. 3 and 4). When the effect of LUC was considered in the 
alternative ER scenario, the climate-only effects from MLR, the CO2 effect and 
the LUC effect were summed (on a log scale) at the grid-cell level followed by the 
same resampling and aggregation procedure to estimate the total effect for ER 
(Supplementary Sections 1 and 2 and Supplementary Fig. 3).

Small variations exist in the effective radiative forcing across the SG methods 
(Supplementary Table 1). After normalizing the effects of SGs using the scaling 
factors that match the mean and trend of the top-of-atmosphere radiative flux 
imbalance reduction by each SG to that of ER (Supplementary Figs. 10 and 11), 
the temperature and total effects of CCT become stronger than those of SAI, MSB 
and ER, but the overall advantage of SGs over ER and our main conclusions remain 
unchanged.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The intermediate data that support the findings of this study are available at https://
doi.org/10.7910/DVN/Y1UHID. Source model data are available upon request 
from the corresponding author.

Code availability
Code for replicating the figures and analysis was written in R (version 3.6.2) or 
NCAR Command Language Version 6.5.0 and has been deposited in the Harvard 
Dataverse at https://doi.org/10.7910/DVN/Y1UHID. NorESM1-ME is available at 
https://github.com/NorESMhub/NorESM. CLM5 is available at https://github.com/
ESCOMP/CTSM.
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Extended Data Fig. 1 | Regional effects of SG or ER on selected main crops per region. a-d, Effects of temperature, radiation (direct and diffuse effects 
combined) and moisture (precipitation and relative humidity effects combined) on regional crop yield (crop-area weighted average; rainfed and irrigated 
proportions merged per crop) under SAI (a), MSB (b), CCT (c) and ER (with extra effect of CO2; d) relative to RCP8.5. The black line depicts regional 
total effect on all six crops in each region, with the asterisks each representing one of the six regions defined in Fig.5. The colour lines represent the partial 
climate and CO2 effects, with each point indicating one of three representative crops with largest cultivation areas in each region. Other minor crops for 
each region are shown in Extended Data Fig. 2. All values are averaged over the period of 2075–2099.
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Extended Data Fig. 2 | Regional effects of SG or ER on other minor crops. a-d, Partial and total effects under SAI (a), MSB (b), CCT (c) and ER (d) as in 
Extended Data Fig. 1 but showing other minor crops existing in each of the six regions. Regional total effects of all six crops (black lines and asterisks) are 
identical to Extended Data Fig. 1.
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Extended Data Fig. 3 | Response of yield to changes in CO2 concentration for each crop type. Points are prognostic yield difference against CO2 difference 
between the experiments RCP8.5 and RCP8.5(45CO2) during 2006–2099. Lines are the predicted CO2 effect using linear and quadratic coefficients from 
regression (see Methods). Red points and line indicate the modified yield change for soy when its CO2 coefficients from regression are reduced by a factor 
of 2.
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Extended Data Fig. 4 | Sensitivity of crop yields to unit changes in different climate variables under SAI estimated using the per-grid-cell MLR method. 
T, RD, RI, P and RH stand for temperature, direct radiation, diffuse radiation, precipitation and relative humidity, respectively. T*RH and RH*P indicate the 
interactions between T and RH and between RH and P, respectively. The regressions are refitted with log change in RD, RI and P so that their coefficients 
can be easily converted and applied to percentage changes in these variables and because these variables show log linear relationship with yield. a, Global 
average responses to unit changes applied uniformly to all grid cells (% indicates the native unit (percent) for relative humidity, but relative changes in 
the radiation terms). b, Global average response to a standard deviation (sd) of a variable for each crop grid cell under the scenario SAI – RCP8.5 during 
2020–2099 (that is, sd is the local variability of climate change induced by SAI). Error bars indicate the 2.5th to 97.5th percentile confidence interval of the 
global average response from Bootstrap resampling and spatial aggregation.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection NorESM1-ME, CLM5.0 (release-clm5.0.14)

Data analysis NCAR Command Language (NCL) Version 6.5.0, R version 3.6.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
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Study description In this study we conducted climate simulations for three solar geoengineering scenarios (SAI, MSB, CCT) and two emissions scenarios 
(RCP4.5, RCP8.5) and crop simulations of six major crop types globally under each of the scenario. We then conducted spatial-
temporal statistical analysis to isolate the effects of individual climate variables, CO2 and other factors on crop yield. A schematic 
figure (Fig. 1) and Table 1 in the main text and the Methods section provide details on the study design.

Research sample Our research sample are model simulated global gridded annual crop yields for each of six crops maize, sugarcane, soy, rice, wheat 
and cotton (rainfed and irrigated separately, altogether 12 types) under each of five climate scenarios from 2020 to 2099 at 6641 
unique crop-occupied grid cells, which together contribute to 23928 crop-grid specific regressions; each regression is based on a one-
dimensional time series with sample size between 60 and 80.

Sampling strategy We included the grid samples for each crop type if it occupies more than 1000 ha in each grid cell (a commonly used filter in 
references cited) for more than 60 years (to allow sufficient sample size) and have positive yields (to ensure valid values of log(yield)) 
in the multiple linear regression (MLR) analysis.

Data collection Climate data were simulated by NorESM1-ME, which were used to drive crop yield simulations by CLM5.0. Global yield observations 
from 2006-2018 were obtained from the Food and Agricultural Organization of the United Nations corporate Statistical Database for 
model validation.

Timing and spatial scale Our modeled yield data were produced at a spatial resolution of 1° (i.e., 192x288 grid cells globally) from the year 2006 to 2099 for 
RCP45 and RCP85 scenarios and 2020-2099 for the three solar geoengineering scenarios. The temporal resolution of model runs was 
30-minute. Yield data were accumulated at annual time step.

Data exclusions We only excluded grid cell samples for a specific crop if it occupies less than 1000 ha in each grid cell in a specific year (see Sampling 
strategy and more details in Methods).

Reproducibility The model simulations could be largely reproduced following the same model settings using the same forcing data, but minor 
internal variability in the climate model could occur at each individual run. The NorESM1-ME model ensemble runs for each of the 
five climate scenarios considered in this study have been thoroughly analyzed in previous studies cited in this paper. The crop yield 
analysis and results can be reproduced using the code provided with this paper.

Randomization Randomized allocation to control and treatment groups was not relevant in this modeling work as all grid samples were subject to 
multiple forcing variables simultaneously in the process-based global gridded crop model, but in the analysis grid samples for each 
crop type were compared with themselves over time (at least 60 years) with quasi-randomly assigned exposure to changing forcing 
conditions. Randomization is involved in our Monte Carlo/Bootstrap resampling (in Methods) to estimate the probability distribution 
of regression predicted partial and total climate effects. 

Blinding Blinding (and bias resulted from knowledge of group allocation) was not relevant in this study as crops and crop-occupied grid cells 
were the main subject and they were simulated simultaneously under the same process-based modeling framework and analysed 
equally in the same statistical procedure detailed above and in Methods.

Did the study involve field work? Yes No
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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