Colleen Golja

A. P. Behrer, R. J. Park, C. M. Golja, D. W. Keith, and G. Wagner. 9/15/2021. “Heat has larger impacts on labor in poorer areas.” Environmental Research Communications, 3, 095001. Publisher's VersionAbstract
Hotter temperature can reduce labor productivity, work hours, and labor income. The effects of heat are likely to be a joint consequence of both exposure and vulnerability. Here we explore the impacts of heat on labor income in the US, using regional wealth as a proxy for vulnerability. We find that one additional day >32 °C (90 °F) lowers annual payroll by 0.04%, equal to 2.1% of average weekly earnings. Accounting for humidity results in slightly more precise estimates. Proxying for wealth with dividend payments we find smaller impacts of heat in counties with higher average wealth. Temperature projections for 204050 suggest that earnings impacts may be 95% smaller for US counties in the richest decile relative to the poorest. Considering the within country distribution of vulnerability, in addition to exposure, to climate change could substantially change estimated within-country differences between the rich and poor in income losses from climate change.
C. M. Golja, L. W. Chew, J. A. Dykema, and D. W. Keith. 2021. “Aerosol Dynamics in the Near Field of the SCoPEx Stratospheric Balloon Experiment.” Journal of Geophysical Research. Publisher's VersionAbstract
Stratospheric aerosol injection (SAI) might alleviate some climate risks associated with accumulating greenhouse gases. Reduction of specific process uncertainties relevant to the distribution of aerosol in a turbulent stratospheric wake is necessary to support informed decisions about aircraft deployment of this technology. To predict aerosol size distributions we apply microphysical parameterizations of nucleation, condensation and coagulation to simulate an aerosol plume generated via injection of calcite powder or sulphate into a stratospheric wake with velocity and turbulence simulated by a three‐dimensional (3D) fluid dynamic calculation. We apply the model to predict the aerosol distribution that would be generated by a propeller wake in the Stratospheric Controlled Perturbation Experiment (SCoPEx). We find that injecting 0.1 g s‐1 calcite aerosol produces a nearly monodisperse plume and that at the same injection rate, condensable sulphate aerosol forms particles with average radii of 0.1 µm at 3 km downstream. We test the sensitivity of plume aerosol composition, size, and optical depth to the mass injection rate and injection location. Aerosol size distribution depends more strongly on injection rate than injection configuration. Comparing plume properties with specifications of a typical photometer, we find that plumes could be detected optically as the payload flies under the plume. These findings test the relevance of in situ sampling of aerosol properties by the SCoPEx outdoor experiment to enable quantitative tests of microphysics in a stratospheric plume. Our findings provide a basis for developing predictive models of SAI using aerosols formed in stratospheric aircraft wakes.
Colleen Golja

Colleen Golja

PhD Student, Harvard John A. Paulson School of Engineering and Applied Sciences

Colleen is a PhD student at the Harvard John A. Paulson School of Engineering and Applied Sciences. Before coming to Harvard, she earned her B.S. in Chemical Engineering from Tufts University, with research experience pertaining to polymer membranes and electrolysis applications. She is interested in climate issues, and is currently looking at the radiative forcing of a variety of aerosols to gain insight into potential materials for use in geoengineering.