Gernot Wagner

J. Paul Kelleher and Gernot Wagner. 2/2018. “Ramsey discounting calls for subtracting climate damages from economic growth rates.” Applied Economics Letters. Publisher's VersionAbstract
The Ramsey equation ties the utility discount rate and the elasticity of marginal utility of consumption together with per capita consumption growth rates to calculate consumption discount rates. For many applications, per capita consumption growth rates can be approximated with per capita output growth rates. That approximation does not work for climate change, which drives an ever-increasing and increasingly uncertain wedge between output and consumption growth. NAS (2017), in a central recommendation and illustrative example, conflates the two. The correct, consumption-based discounting method generally decreases consumption discount rates and, thus, increases the resulting Social Cost of Carbon Dioxide (SC-CO2).
Paul Bodnar, Caroline Ott, Rupert Edwards, Stephan Hoch, Emily F. McGlynn, and Gernot Wagner. 12/4/2017. “Underwriting 1.5°C: competitive approaches to financing accelerated climate change mitigation.” Climate Policy. Publisher's VersionAbstract

Delivering emission reductions consistent with a 1.5°C trajectory will require innovative public financial instruments designed to mobilize trillions of dollars of low-carbon private investment. Traditional public subsidy instruments such as grants and concessional loans, while critical to supporting nascent technologies or high-capital-cost projects, do not provide the price signals required to shift private investments towards low-carbon alternatives at a scale. Programmes that underwrite the value of emission reductions using auctioned price floors provide price certainty over long time horizons, thus improving the cost-effectiveness of limited public funds while also catalysing private investment.

Taking lessons from the World Bank’s Pilot Auction Facility, which supports methane and nitrous oxide mitigation projects, and the United Kingdom’s Contracts for Difference programme, which supports renewable energy deployment, we show that auctioned price floors can be applied to a variety of sectors with greater efficiency and scalability than traditional subsidy instruments. We explore how this new class of instrument can enhance the cost-effectiveness of carbon pricing and complementary policies needed to achieve a 1.5°C outcome, including through large-scale adoption by the Green Climate Fund and other international and domestic climate finance vehicles.

Key policy insights

  • Traditional public climate finance interventions such as grants and concessional loans have not mobilized private capital at the scale needed to decarbonize the world economy consistent with the 2°C target, much less 1.5°C, and will likely face ongoing constraints in the future.
  • Auctioned price floors – subsidies that offer a guaranteed price for future emission reductions – maximize climate impact per public dollar while incentivizing private investment in low-carbon technologies.
  • This new subsidy instrument, if applied at scale via the Green Climate Fund and other domestic and international climate finance vehicles, can promote private sector competition to bring down technology costs and drive innovation, thereby supporting a longer term transition to regulation and sector- or economy-wide carbon markets.
  • To facilitate the transition from public subsidy to the market-based support of climate mitigation, auctioned price floors should work in tandem with carbon pricing and complementary policies, using the same accounting and monitoring, reporting and verification toolkits.
Jonas Meckling, Thomas Sterner, and Gernot Wagner. 11/13/2017. “Policy sequencing toward decarbonization.” Nature Energy. Publisher's VersionAbstract
Many economists have long held that carbon pricing—either through a carbon tax or cap-and-trade—is the most cost-effective way to decarbonize energy systems, along with subsidies for basic research and development. Meanwhile, green innovation and industrial policies aimed at fostering low-carbon energy technologies have proliferated widely. Most of these predate direct carbon pricing. Low-carbon leaders such as California and the European Union (EU) have followed a distinct policy sequence that helps overcome some of the political challenges facing low-carbon policy by building economic interest groups in support of decarbonization and reducing the cost of technologies required for emissions reductions. However, while politically effective, this policy pathway faces significant challenges to environmental and cost effectiveness, including excess rent capture and lock-in. Here we discuss options for addressing these challenges under political constraints. As countries move toward deeper emissions cuts, combining and sequencing policies will prove critical to avoid environmental, economic, and political dead-ends in decarbonizing energy systems.
Dustin Tingley and Gernot Wagner. 10/31/2017. “Solar geoengineering and the chemtrails conspiracy on social media.” Palgrave Communications, 3, 12. Publisher's VersionAbstract
Discourse on social media of solar geoengineering has been rapidly increasing over the past decade, in line with increased attention by the scientific community and low but increasing awareness among the general public. The topic has also found increased attention online. But unlike scientific discourse, a majority of online discussion focuses on the so-called chemtrails conspiracy theory, the widely debunked idea that airplanes are spraying a toxic mix of chemicals through contrails, with supposed goals ranging from weather to mind control. This paper presents the results of a nationally representative 1000-subject poll part of the 36,000-subject 2016 Cooperative Congressional Election Study (CCES), and an analysis of the universe of social media mentions of geoengineering. The former shows ~ 10% of Americans declaring the chemtrails conspiracy as “completely” and a further ~ 20–30% as “somewhat” true, with no apparent difference by party affiliation or strength of partisanship. Conspiratorial views have accounted for ~ 60% of geoengineering discourse on social media over the past decade. Of that, Twitter has accounted for >90%, compared to ~ 75% of total geoengineering mentions. Further affinity analysis reveals a broad online community of conspiracy. Anonymity of social media appears to help its spread, so does the general ease of spreading unverified or outright false information. Online behavior has important real-world reverberations, with implications for climate science communication and policy.
David W. Keith, Gernot Wagner, and Claire L. Zabel. 9/1/2017. “Solar geoengineering reduces atmospheric carbon burden.” Nature Climate Change, 7, Pp. 617–619. Publisher's VersionAbstract

Solar geoengineering is no substitute for cutting emissions, but could nevertheless help reduce the atmospheric carbon burden. In the extreme, if solar geoengineering were used to hold radiative forcing constant under RCP8.5, the carbon burden may be reduced by ~100 GTC, equivalent to 12–26% of twenty-first-century emissions at a cost of under US$0.5 per tCO2.

Jeremy Proville, Daniel Zavala-Araiza, and Gernot Wagner. 3/27/2017. “Night-time lights: A global, long term look at links to socio-economic trends.” PLoS ONE, 12, 3. Publisher's VersionAbstract
We use a parallelized spatial analytics platform to process the twenty-one year totality of the longest-running time series of night-time lights data—the Defense Meteorological Satellite Program (DMSP) dataset—surpassing the narrower scope of prior studies to assess changes in area lit of countries globally. Doing so allows a retrospective look at the global, long-term relationships between night-time lights and a series of socio-economic indicators. We find the strongest correlations with electricity consumption, CO2 emissions, and GDP, followed by population, CH4 emissions, N2O emissions, poverty (inverse) and F-gas emissions. Relating area lit to electricity consumption shows that while a basic linear model provides a good statistical fit, regional and temporal trends are found to have a significant impact.
Elizabeth T. Burns, Jane A. Flegal, David W. Keith, Aseem Mahajan, Dustin Tingley, and Gernot Wagner. 11/1/2016. “What do people think when they think about solar geoengineering? A review of empirical social science literature, and prospects for future research.” Earth's Future. Publisher's VersionAbstract

Public views and values about solar geoengineering should be incorporated in science-policy decisions, if decision makers want to act in the public interest. In reflecting on the past decade of research, we review around 30 studies investigating public familiarity with, and views about, solar geoengineering. A number of recurring patterns emerge: (1) general unfamiliarity with geoengineering among publics; (2) the importance of artifice versus naturalness; (3) some conditional support for certain kinds of research; and (4) nuanced findings on the “moral hazard” and “reverse moral hazard” hypotheses, with empirical support for each appearing under different circumstances and populations. We argue that in the coming decade, empirical social science research on solar geoengineering will be crucial, and should be integrated with physical scientific research.

Robert E. Kopp, Rachael Shwom, Gernot Wagner, and Jiacan Yuan. 7/2016. “Tipping elements and climate-economic shocks: Pathways toward integrated assessment.” Earth's Future. Publisher's VersionAbstract

The literature on the costs of climate change often draws a link between climatic ‘tipping points’ and large economic shocks, frequently called ‘catastrophes’. The phrase ‘tipping points’ in this context can be misleading. In popular and social scientific discourse, ‘tipping points’ involve abrupt state changes. For some climatic ‘tipping points,’ the commitment to a state change may occur abruptly, but the change itself may be rate-limited and take centuries or longer to realize. Additionally, the connection between climatic ‘tipping points’ and economic losses is tenuous, though emerging empirical and process-model-based tools provide pathways for investigating it. We propose terminology to clarify the distinction between ‘tipping points’ in the popular sense, the critical thresholds exhibited by climatic and social ‘tipping elements,’ and ‘economic shocks’. The last may be associated with tipping elements, gradual climate change, or non-climatic triggers. We illustrate our proposed distinctions by surveying the literature on climatic tipping elements, climatically sensitive social tipping elements, and climate-economic shocks, and we propose a research agenda to advance the integrated assessment of all three.