Sebastian Eastham

Hongwei Sun, Sebastian Eastham, and David Keith. 3/21/2022. “Developing a Plume-in-Grid Model for Plume Evolution in the Stratosphere.” Journal of Advances in Modeling Earth Systems, 14, 4. Publisher's VersionAbstract
Stratospheric emissions from aircraft or rockets are important sources of chemical perturbations. Small-radius high-aspect-ratio plumes from stratospheric emissions are smaller than global Eulerian models' grid cells. To help global Eulerian models resolve subgrid plumes in the stratosphere, a Lagrangian plume model, comprising a Lagrangian trajectory model and an adaptive-grid plume model with a sequence of plume cross-section representations (from a highly resolved 2-D grid to a simplified 1-D grid based on a tradeoff between the accuracy and computational cost), is created and embedded into a global Eulerian (i.e., GEOS-Chem) model to establish a multiscale Plume-in-Grid (PiG) model. We compare this PiG model to the GEOS-Chem model based on a 1-month simulation of continuous inert tracer emissions by aircraft in the stratosphere. In the PiG results, the final injected tracer is more concentrated and approximately 1/3 of the tracer is at concentrations 2–4 orders of magnitude larger compared to the GEOS-Chem results. The entropy of injected tracer in the PiG results is 6% lower than the GEOS-Chem results, indicating less tracer mixing. The total product mass from a hypothetical second-order process (applied to the injected tracer) in the PiG results is 2 orders of magnitude larger than the GEOS-Chem results. Increasing the GEOS-Chem model's horizontal resolution 4-fold is insufficient to resolve this product difference, while requiring over seven times the computational resources of the PiG model. This paper describes the PiG model framework and parameterization of plume physical processes. Chemical and aerosol processes will be introduced in the future.
Sebastian Eastham, Sarah Doherty, David Keith, Jadwiga H. Richter, and Lili Xia. 2021. “Improving Models for Solar Climate Intervention Research.” Eos. Publisher's VersionAbstract

Solar climate intervention, also known as solar radiation modification, is an approach intended to mitigate the impacts of climate change by reducing the amount of solar energy that the Earth system traps. It sits alongside three other plausible responses to climate risk: emission cuts and decarbonization, atmospheric carbon dioxide (CO2) removal, and adaptation to a changing climate.

Unlike the other approaches, solar climate intervention (SCI), which comprises various techniques, aims to modify Earth’s radiation budget—the amounts and balance of solar energy that Earth absorbs and reflects—directly. Implementing SCI means either decreasing inbound solar (shortwave) radiation by reflecting it back into space before it is absorbed or increasing the amount of outbound terrestrial (longwave) radiation.

Potential methods of SCI include stratospheric aerosol injection (SAI), marine cloud brighteningcirrus cloud thinningsurface albedo modification, and space-based methods involving, for example, mirrors (Figure 1). At present, the potential efficacy and risks of implementing these approaches to reduce climate change are highly uncertain and likely depend on how they are implemented.

The Geoengineering Modeling Research Consortium (GMRC) was founded to coordinate SCI modeling research and to identify and resolve relevant issues with physical models, especially where existing climate research is unlikely to do so. Here we synthesize 2 years of GMRC meetings and research, and we offer specific recommendations for future model development.

Sebastian Eastham

Sebastian Eastham

Visiting Scientist, Harvard's Solar Geoengineering Research Program

Sebastian is a research scientist at the Massachusetts Institute of Technology's Laboratory for Aviation and the Environment (LAE). His previous work has covered development and application of global atmospheric chemistry and transport models, ranging from his work to implement stratospheric chemistry in the GEOS-Chem community atmospheric model, through to his recent paper discussing the possible health effects of solar geoengineering. He is currently working as a visiting scientist for the Harvard Solar Geoengineering Research Program, investigating the behavior of aircraft plumes in the stratosphere - including those which would be expected to form if stratospheric aerosol injection were ever deployed.