Climate Policy

2022
Anthony R. Harding, Mariia Belaia, and David W. Keith. 6/14/2022. “The Value of Information About Geoengineering and the Two-Sided Cost of Bias.” Climate Policy, Pp. 1-11. Publisher's VersionAbstract
Solar geoengineering (SG) might be able to reduce climate risks if used to supplement emissions cuts and carbon removal. Yet, the wisdom of proceeding with research to reduce its uncertainties is disputed. Here, we use an integrated assessment model to estimate that the value of information that reduces uncertainty about SG efficacy. We find the value of reducing uncertainty by one-third by 2030 is around $4.5 trillion, most of which comes from reduced climate damages rather than reduced mitigation costs. Reducing uncertainty about SG efficacy is similar in value to reducing uncertainty about climate sensitivity. We analyse the cost of over-confidence about SG that causes too little emissions cuts and too much SG. Consistent with concerns about SG’s moral hazard problem, we find an over-confident bias is a serious and costly concern; but, we also find under-confidence that prematurely rules out SG can be roughly as costly. Biased judgments are costly in both directions. A coin has two sides. Our analysis quantitatively demonstrates the risk-risk trade-off around SG and reinforces the value of research that can reduce uncertainty.
the_value_of_information_about_solar_geoengineering_and_the_two_sided_cost_of_bias.pdf
2019
Douglas MacMartin, Peter Irvine, Ben Kravitz, and Joshua Horton. 9/23/2019. “Technical characteristics of a solar geoengineering deployment and implications for governance.” Climate Policy, 19, 10, Pp. 1325-1339. Publisher's VersionAbstract
Consideration of solar geoengineering as a potential response to climate change will demand complex decisions. These include not only the choice of whether to deploy solar engineering, but decisions regarding how to deploy, and ongoing decisionmaking throughout deployment. Research on the governance of solar geoengineering to date has primarily engaged only with the question of whether to deploy. We examine the science of solar geoengineering in order to clarify the technical dimensions of decisions about deployment – both strategic and operational – and how these might influence governance considerations, while consciously refraining from making specific recommendations. The focus here is on a hypothetical deployment rather than governance of the research itself. We first consider the complexity surrounding the design of a deployment scheme, in particular the complicated and difficult decision of what its objective(s) would be, given that different choices for how to deploy will lead to different climate outcomes. Next, we discuss the on-going decisions across multiple timescales, from the sub-annual to the multi-decadal. For example, feedback approaches might effectively manage some uncertainties, but would require frequent adjustments to the solar geoengineering deployment in response to observations. Other decisions would be tied to the inherently slow process of detection and attribution of climate effects in the presence of natural variability. Both of these present challenges to decision-making. These considerations point toward particular governance requirements, including an important role for technical experts – with all the challenges that entails.
Technical Characteristics of a Solar Geoengineering Deployment and Implications for Governance (pdf)
David Keith and Joshua Horton. 4/23/2019. “Multilateral parametric climate risk insurance: a tool to facilitate agreement about deployment of solar geoengineering?” Climate Policy. Publisher's VersionAbstract
States will disagree about deployment of solar geoengineering, technologies that would reflect a small portion of incoming sunlight to reduce risks of climate change, and most disagreements will be grounded in conflicting interests. States that object to deployment will have many options to oppose it, so states favouring deployment will have a powerful incentive to meet their objections. Objections rooted in opposition to the anticipated unequal consequences of deployment may be met through compensation, yet climate policy is inhospitable to compensation via liability. We propose that multilateral parametric climate risk insurance might be a useful tool to facilitate agreement on solar geoengineering deployment. With parametric insurance, predetermined payouts are triggered when climate indices deviate from set ranges. We suggest that states favouring deployment could underwrite reduced-rate parametric climate insurance. This mechanism would be particularly suited to resolving disagreements based on divergent judgments about the outcomes of proposed implementation. This would be especially relevant in cases where disagreements are rooted in varying levels of trust in climate model predictions of solar geoengineering effectiveness and risks. Negotiations over the pricing and terms of a parametric risk pool would make divergent judgments explicit and quantitative. Reduced-rate insurance would provide a way for states that favour implementation to demonstrate their confidence in solar geoengineering by underwriting risk transfer and ensuring compensation without the need for attribution. This would offer a powerful incentive for states opposing implementation to moderate their opposition.
horton_and_keith_climate_policy_2019.pdf
2017
Paul Bodnar, Caroline Ott, Rupert Edwards, Stephan Hoch, Emily F. McGlynn, and Gernot Wagner. 12/4/2017. “Underwriting 1.5°C: competitive approaches to financing accelerated climate change mitigation.” Climate Policy. Publisher's VersionAbstract

Delivering emission reductions consistent with a 1.5°C trajectory will require innovative public financial instruments designed to mobilize trillions of dollars of low-carbon private investment. Traditional public subsidy instruments such as grants and concessional loans, while critical to supporting nascent technologies or high-capital-cost projects, do not provide the price signals required to shift private investments towards low-carbon alternatives at a scale. Programmes that underwrite the value of emission reductions using auctioned price floors provide price certainty over long time horizons, thus improving the cost-effectiveness of limited public funds while also catalysing private investment.

Taking lessons from the World Bank’s Pilot Auction Facility, which supports methane and nitrous oxide mitigation projects, and the United Kingdom’s Contracts for Difference programme, which supports renewable energy deployment, we show that auctioned price floors can be applied to a variety of sectors with greater efficiency and scalability than traditional subsidy instruments. We explore how this new class of instrument can enhance the cost-effectiveness of carbon pricing and complementary policies needed to achieve a 1.5°C outcome, including through large-scale adoption by the Green Climate Fund and other international and domestic climate finance vehicles.

Key policy insights

  • Traditional public climate finance interventions such as grants and concessional loans have not mobilized private capital at the scale needed to decarbonize the world economy consistent with the 2°C target, much less 1.5°C, and will likely face ongoing constraints in the future.
  • Auctioned price floors – subsidies that offer a guaranteed price for future emission reductions – maximize climate impact per public dollar while incentivizing private investment in low-carbon technologies.
  • This new subsidy instrument, if applied at scale via the Green Climate Fund and other domestic and international climate finance vehicles, can promote private sector competition to bring down technology costs and drive innovation, thereby supporting a longer term transition to regulation and sector- or economy-wide carbon markets.
  • To facilitate the transition from public subsidy to the market-based support of climate mitigation, auctioned price floors should work in tandem with carbon pricing and complementary policies, using the same accounting and monitoring, reporting and verification toolkits.