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Abstract

We have demonstrated an interferometer for atoms. A three grating
geometry is used, resulting in an interferometer of the "amplitude division " type.
We used a highly collimated beam of sodium atoms with a de Broglie wavelength
of 16 pm and high-quality 0.4 nm-period free-standing gratings. The interference
signal is 70 Hz, which allows us to determine the phaseto 0.1 rad in 1 min. Thisis
the first atom interferometer in the sense that it simultaneously and distinctly
separates the atoms in position and momentum.

In order to make the gratings for our interferometer, we have developed a
novel method for fabricating free-standing micro-structures. Using this method
we have made high-quality 0.2 and 0.4-mm period gratings, as well asthe first
zone plate lenses to be used for atoms. We have previously reported the first
observation of the diffraction of atoms from afabricated periodic structure.

We have developed a numerical procedure for modeling the behavior of
our interferometer. The method allows us to compute the interference pattern
formed by a system of perforated screensin O(Nlog(N)) time where N isthe
transverse resolution.

In addition, we have proposed a novel interferometer for atoms using
diffraction gratings which work by grazing incidence reflection. We also suggest
the possibility of doing two particle correlation experiments with atoms.

We discuss the possibility for measuring the phase shift due to the
gravitational field acting on our interferometer.

Thesis: Supervisor: Dr. David E. Pritchard
Title: Professor of Physics
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0 Introduction

"the—well-planned—nbuilding of pigeon holes must proceed faster
than the recording of facts to be housed in them"
(Lakatos 1970)

Quantum mechanics was initially constructed to apply to the
internal degrees of freedom of atomic systems. De Broglie (1924)
began applying quantum mechanics (in the form of "phase waves") to
the external degrees of freedom of photons and electrons. This
generalization raised the problem of measurement: when are the
dynamics of a particle governed by the phase wave? The easy
answer is, of course, when you do not measure its position. But this
answer does not consistently resolve the question of what constitutes
a measurement.

De Broglie's ideas have been gradually extended so that it is now
generally believed that quantum mechanics can be correctly applied
to all systems. However, | think the question of measurement is still
with us. For example; it is not clear whether or not there is a limit to
the size of objects that may be put into superposed states that have
experimental consequences.

This thesis describes a collection of experiments demonstrating
the interference of sodium atoms. In the context of the remarks
made above, these experiments are tests of the quantum mechanical
laws of motion applied to larger systems. Alternatively, the
experiments may be viewed as an application of 1990's technology to
make clear demonstrations of physics that was well understood in
the 1930's.

The central result of my graduate work is the demonstration of
an interferometer for atoms. However, this thesis is organized so as
to present “atom optics” as if it was a distinct field, with the
interferometer and various other work presented as examples. This
somewhat artificial construction is intended to make two points: that
atom optics is becoming a distinct subject, and that it should be seen
as a collection of useful tricks to be applied to interesting problems
rather than as an end in itself.

The description of the core experimental work is distributed
throughout the thesis. The atom beam system is described in chapter
1.C, the grating fabrication in 1.D.ii, and the interferometer design in
3.B.ii. The data from the interferometer are presented in chapter
3B.iii. My discussion of the context and theory associated with the



experimental work is contained in chapter 2 and in the beginning of
chapter 3. The details of the numeric modeling of the experiment are
described in chapter 2.B. The papers included in the appendices
contain significant information that is not discussed in the thesis
body. | will now outline the thesis in more detail in order to assist
the reader in locating material that may be useful.

I begin Chapter 1 with a summary of various existing particle
beam sources—the context for atom optics. | then turn to the details
of our atomic beam system, the most idiosyncratic part of the
experiment. The chapter closes with the detailed recipe for making
our transmission gratings.

Chapter 2 opens with some unfocused generalities regarding the
difficulties of applying standard quantum mechanics to the the
problems of atom optics. In the second section | cover the details of
the numeric models we have constructed of our experiment.

Chapter 3 contains the details of the interferometer experiment.
It starts with a brief outline of the historical context of atom
interferometers. It then turns to a categorization of the applications
of atom interferometers. Finally, the experimental design and data
are covered in part B of the chapter.

Chapter 4 consists of an example of how our atom interferometer
might be applied to making a simple measurement. | briefly examine
how we could perform a simple equivalence principal test with our
apparatus—the atom conterpart of the COW experiment.

Chapter 5 concludes the thesis by examining the status of this
work as science.



1 Atom Optics: Beams and Gratings

1.A  What is atom optics?

By atom optics we mean the expanding collection of techniques
by which atoms may be manipulated in the manner of light in
classical optics. Existing atom optical elements include mirrors,
lenses, and diffraction gratings as well as dissipative elements such
as slowers, 'coolers’, and traps which have no analogue in classical
optics. To date, these atom optical elements have mainly been
realized as demonstrations of principal, we hope that we will soon
see some of them used as tools in real experiments. My thesis work
has centered around developing such demonstrations of atom optics:
transmission gratings, reflection gratings (yet unrealized), zone-plate
lenses, and an interferometer. In this chapter | will set specific
discussion of our beam and gratings into the more general context of
atom optics.

1.B Beams: Atoms and other particles

For a matter-wave optician, an ideal beam system has simple
characteristics: a source with arbitrary brightness emitting particles
of given mass and velocity distribution, which are detected by an
infinitely-fast noiseless detector. The internal quantum state of each
particle is relevant to experiments, but is conveniently ignored in
this discussion. A key issue is the specification of the quantum state
of the particles’ external degrees of freedom. This is the question of
whether the phase space density of a thermal-source particle beam
fully determines its quantum state.



B % S m quantum det response Reference
Beam cm?secl  mesec? s=v/Dv AMU density Sec
n 1014 277106 1 1 12" 1015 106 Shull, 1988
e 6 1020 4 10° 108 (9 5 104 121012 10° Standard text?
e 6 10% 137100 37105(7) 5 104 327106 10° Field emmison?
He 1022 105 200 4 2" 105 flux mode  Toenneies?
He' 2" 108 177105 15 4 36 1014 108 Faulstich, 1990
Na+ n 5 1015 47 102 100 (?) 23 5 105 flux mode  Nellesserft, 1990
Na 101° 105 10 23 53 1012 102 Our beam
n 4 10% c 5108 n.a 51011 10 n.a.>
Quantity Symbol Notes
Source brightness B Detected brightness: str!cm? sec?
Mean velocity v m sec'l.
Speed ratio S Just the inverse relative vel ocity width, v/Dv. Used

extensively in the supersonic beam literature.

Mass m InAMU.

Quantum density

Detector timeresponse  t

Also Known as the occupancy ratio.

In particle counting mode.

Table 1. Properties of various low energy particle beams

compared. By Na+ n | mean laser cooled Na, He" is metastable He. For

calculating wavelengths | find it most convenient to remember h=0.4

AMU mm sec 1.

1 For an ideal Pierce diode at 10 keV; | used “Building scientific
apparatus” by Moore (1983), p303 (an exceptionally useful book).

2 This information is suspect, it is from Silverman (1987) who references
a Tonomura paper that does not contain all the relevant facts. | suspect it may

be inflated by as much as 103 in spectral brightness.

3 There are many similar references, this is now standard beam

technology.

4 This is the Ertmer group, | assume that the transverse and longitudinal
velocity widths are 0.5 m sec 1, although this is not clearly stated in the paper.
They used florescent detection but could use a hot wire detector like ours.

5 This example is for a standard frequency stabilized dye laser (Coherent

699).



Thisisanon-trivial issue, which will be treated in the theory section below. For
now, | will assume that the external quantum state is fully determined by the
velocity distribution. In the table below | compare various existing particle beam

systems on the basis of these characteristics.
A most important quantity is the spectral brightness which is

Bs= s(p °
Dp (1.1)
where s isthe flux, and p is the momentum. From this we can calcul ate the phase
space density
r.,=_BS
W mav4 (1.2)

which isimportant because, by Louville' stheorem, it is aconstant (along a
particle's trgjectory) for conservative systems. The phase space density is
proportional to the quantum density or occupancy ratio: quantum density=h3r ,
where h is Planck’ s quantum of action. The quantum density determines the

extent to which guantum statistics are important.

1.C Our beam

The supersonic sodium beam source used in this research was
constructed over a period of six years by at least four successive Phd
students. It was last described in full by Gould in '86, and since then
it has been treated only Incrementally in the theses of successive
students. Because | have rebuilt and redesigned all of its major
components, | think it is useful to attempt a complete description. In
doing so | must make a few disclaimers. | know little of the physics
of supersonic flows, or of the ionization of alkalis on metal surfaces.
Although knowledge of these disciplines is necessary for a full
understanding this device, they are sufficiently complex to make a
virtue of an empirical approach.

I will start with a condensed description of the complete beam
apparatus, followed by a detailed description moving from source to
detector. Our atomic beam is a supersonic nozzle-beam of sodium in
an argon carrier gas. Adiabatic expansion of the gas after it leaves
the nozzle results in a fairly monochromatic beam: Dv/v = 12% with v
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= 103 m/s. The sodium has the same velocity as the carrier gas,
giving it a de Broglie wavelength of 16 pm. The beam is collimated
by two 20 mm slits spaced 0.9 m apart to forma 1l mm ~ 20 nm
ribbon-shaped beam with a divergence of 20 nrad. Individual
sodium atoms are detected after surface ionization on a 25 nm-
diameter hot wire (80% Pt, 20% Ir alloy) located 1.6 m downstream
from the second slit. In order to achieve high ionization efficiency it
is necessary to expose the wire to Oxygen at regular intervals: 10-3
torr Oz for ~1 min every ~30 min usually proves to be sufficient.
Under these conditions the detector’s time response is ~15 msec and
the average background is ~20 Hz. A key problem is that the
background signal is dominated by highly non-Poissonian bursts (see
example in Fig. 3.9). Although we cannot directly measure the
ionization efficiency of the wire we believe that it is better than 10%.
In any case, greater wire efficiency, combined with improvements to
our vacuum system, and the sodium source, now allow us to achieve
detected fluxes of >1 MHz through a 1 mm high slit. This corresponds
to a detected source brightness of 1019 sec-1 cm-2 str-1.

Supersonic-expansion molecular beams are treated in a number
of comprehensive works, especially useful and comprehensive are
Habetts (1977) and Comparge (1974), a useful short summary of
seeded alkali beams is found in Serri (1974), . The basic physics of
the gas expansion is clear. The flow through the nozzle is at high
renolds number (>104) so that we can ignore the work done against
viscosity, and calculate the final velocity using energy conservation
in the form of Bernoulli's theorem. After leaving the nozzle a packet
of gas continues to expand adiabatically, doing work on the
surrounding packets, and thus decreasing local temperature while
increasing the mean velocity. This expansion continues until the gas
ceases to expand adiabatically because the mean free path gets
longer than the length scale of the temperature change — that is until
a particle experiences its last collision. As the gas expands the local
sound velocity decreases with the root of the temperature so that the
flow becomes hypersonic.

There are two distinctly different approaches to the placement
of the skimmer. It can either be before or after the region in the
undisturbed vacuum expansion of the beam in which the atoms
undergo there last collision. In the "Comparge" type source that we
use, the atoms last collision occurs after the skimmer orifice. The
expanding gas forms a stationary shock front where it interacts with
the background gas in the chamber (~10 ntorr). In theory the
hypersonic flow ensures that the gas inside the shock front expands
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as it would into vacuum. By placing the skimmer inside this shock
front we are able to extract a small on axis portion (~1%)¢ of the mass
flux, allowing the rest to be pumped away by high throughput
pumps. A Comparge source uses the shock front to allow a higher
source chamber pressure, and thus a less expensive pumping system,
at the expense of more tricky optimization during operation.

Our source (Fig 2.1) consists of the pressurized sodium oven, and
the beam extraction skimmer enclosed in a chamber evacuated with
a high throughput vacuum pump (a stokes ring jet booster pump). It
is important to consider the oven and beam extraction system as a
unit, because their performance cannot be meaningfully measured in
isolation. The oven is a small heated container containing a few
grams of sodium pressurized with ~2 bar of Argon, see figure 1.1.
Operating temperatures at the nozzle range from 590 to 730° C, the
reservoir is kept about 30 to 60° C cooler. The nozzle is 70 nm in
diameter, and is located ~1 cm from the skimmer.

/,_4 2 Bar Ar

650 C 650 C

Py
e

Na
550 C

Figure 2.1. A schematic of our atom beam source.

On their flight from source to detector the atoms pass through a
30 cm-long differential pumping region, and a 1.7 m-long main
chamber. The atom flux is monitored with a hot Iridium ribbon
(current from surface ionization is measured) at the exit from the
differential chamber. There are several mysteries associated with
understanding the measured fluxes. The first concerns the flux from
the oven; it is ~10 times less than we predict using the vapor
pressure for Na and the measured fluxes. The second is the
attenuation of the beam in the main chamber. At a pressure of ~10-6

6 Measured by us, using ion gauges to and assumed pumping speeds, we
get a ratio of 0.003.
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torr the mean free path of sodium in the main chamber should be
~10 m if we use the total quantum mechanical cross section of 500
A2, There should be no significant absorption, but we have evidence
gathered by varying the pressure with a leak (when the vacuum
system was working very well), that indicates the absorption may be
as large as a factor of ten. Presumably, the discrepancy is because
the atoms are lost from the beam if they are scattered by more than
~3"10-° rad.

The sodium atoms are detected by ionization on a high work-
function metal surface, the ions are then counted using a channel
electron multiplier (CEM). The surface ionization process requires
that the work function of the metal be larger than the ionization
potential of the atom. Surface ionization occurs when an electron
bound to an atom in contact with the surface may tunnel through the
potential barrier to attain a lower energy state in the metal leaving
the free ion. In practice, both the efficiency of ionization, and the
mean residence time before ionization occurs depends on the wire's
temperature and surface chemistry. The residence times are
surprisingly long, for our Pt/Ir alloy at 700 ° C typical? residence
times are 3-100 msec, and efficiencies are between unity and 1%. We
assume that the long residence times (as compared with the
quantum tunneling time) is due to non uniformity of the surface
work function, the atom diffuses over the surface until it arrives at a
region of high work function.

In general the efficiency, background rate, and detection speed
increase with the temperature, the rate of increase rises dramatically
at 600-800 ° C. However, we often see a small region in which the
efficiency and background decrease with temperature at 700 ° C, this
is our ideal operating point. We have been able to achieve a ~10 fold
increase in sensitivity by periodically oxygenating the hot wire. |
believe that the oxygen acts by burning off carbon deposits formed
by hydrocarbon contamination of the vacuum system. This
hypotheses is supported by the fact that the effect of oxygenation
persists longer when the vacuum is cyropumped with a small LN2
trap. At best we are able to achieve efficiencies of over 10%, and
time responses of ~5 msec with background rates of ~50 Hz. Hot wire
ionization is extremely selective for weekly bound alkalis with
respect to the constituents of the background molecular gas (H20, No,

7 We have determined the temperature from the measured (I12R) power
dissipated. In order to do this accurately we made a simple numerical model of
the temperature profile in the wire which is necessary because conduction to
the ends is important.
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etc). At the operating pressure of our detector chamber (~10-7 torr)
the flux of background gas is as much as 109 times that of the
detected sodium.

As compared to other available methods, detection by surface
ionization has two wonderful properties: it is both efficient and
highly selective. Other detection methods commonly considered are,
florescence detection, and electron bombardment ionization followed
by mass spectrometry. Both of these methods are difficult to
implement because of the low fluxes involved, typically 10° to 107
cm-2 sec'l. Florescence detection is extremely selective (even
isotopically) but it entails considerable technical difficulties, it
requires a dedicated frequency-stabilized laser system, and makes
extreme demands on the efficiency of the scattered light rejection
system. Impact ionization has poor efficiency due to limitations on
the electron fluxes available, and mass spectrometry is insufficiently
selective (at rejecting background gas ions).

A detection method that would be extremely selective, efficient,
and fast is optical pumping to a rydberg state followed by field
ionization. This method does require a complex laser system, but it
should afford near unity efficiency (>90 %), near zero background
rate (—=0.2 Hz), and time response in the order of 10-7 seconds. In
short — a nearly perfect detection system. With the advent of
inexpensive diode laser systems, such a detector may become easily
realizable for many atomic species.

1.0 Gratings for atoms

1.D.i Gratings as beam splitters.

Diffraction gratings for atoms a interesting chiefly for their
application as coherent beam splitters. This is true despite the
disadvantages of gratings, and is a consequence of the difficulty of
realizing any non dispersive alternatives. Solid beam splitters, such
as are available for neutrons and photons, are impossible for atoms;
this is due to the large potential energy of atoms in solids which
makes the tunnelling depth of a free atom with thermal energy is
much less than atomic dimensions. Atoms may be partially reflected
from spatial discontinuities in their potential energy. In principal,
static or near resonant electromagnetic fields could be used to make
a beam splitter of this type. This is difficult because for efficient
reflection the potential energies must be of order the atoms kinetic
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energy, and the potentials must change over length scales not much
larger that the atom's de Broglie wavelength. Three types of
diffraction gratings for atoms have been realized: reflection from the
atomic planes of a crystal surface, transmission through the periodic
potential formed by a standing wave of near resonant light, and
transmission through a free-standing periodic structure. | will
discuss these examples in some detail, with reference to their
possible application to atom interferometry. | will then argue that a
forth type of diffraction grating is both feasible and useful.

Although it was not recognized as such, the first atomic beam
splitter was demonstrated in 1929; it was the diffraction of atoms by
reflection from the surface of an ionic crystal. Esterman and Stern
(1930) observed diffraction of He from the cleaved face of a LiF
crystal. This technique has since been refined through its extensive
application to the study of the phonon structure of crystal surfaces.
Constructing an interferometer from these crystal surface beam
technique would be exceptionally challenging. This is because the
interatomic spacing in a crystal surface is of the same order as the de
Broglie wavelength of thermal atomic beams, and so the angular
separation of the diffracted beams is of order unity (i.e., ~rad). The
near normal incidence of the beam on the crystals of such an
interferometer would require relative flatness, rigidity, and overall
alignment of separate surfaces to tolerances smaller than atomic
dimensions.

In 1983 our group (Gould et al, 83) demonstrated the atomic
version of the Kapitza-Dirac effect, in which atoms are diffracted
from a standing wave of near resonant light. The grating period in
the standing wave is 1/2 the optical wavelength, thus the angular
separation of the diffracted orders is | g/l 1ight Wwhich is ~60 nrad for
a thermal sodium beam. This effect has subsequently been
demonstrated using a beam of metastable Helium. In addition, a
novel laser cooling technigue which has the property of trapping
atoms in a superposition of two momentum states differing by two
units of photon momentum has been demonstrated. Interferometers
based on this technique have been proposed, and will be discussed in
detail in part two, but have not yet been realized. This method is
limited to atoms that have accessible laser transitions (frequently
requiring optical state preparation of the atoms), which are not the
atomic species most suitable for the production of intense atomic
beams (e.g. He).

In 1988 we demonstrated the diffraction of atoms by
transmission through a fabricated periodic structure. The work is
described in detail in Keith, 88 which is appendix 1 of this thesis. The
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methods of fabricating such grating are described below. The
advantage of these gratings is that they are work for any atom (or
molecule), and that there is a practical possibility of reducing their
period below 0.1 mm. Compared to the light gratings discussed above,
the chief disadvantage of these gratings is that they are amplitude
gratings, and so must necessarily absorb about half of the incident
beam.

If atoms could be reflected from the surface of a conventional
diffraction grating, a useful new class of atom beam splitters would
result. This is because reflection gratings can be used at grazing
incidence which makes the period appear foreshortened; resulting in
large angular separation of the diffracted beams. Such a fabricated
reflection grating would fill the gap between the 0.1 nm-period of
crystal surfaces, and the 100 nm-period fabricated transmission
gratings. This might prove ideal for a next generation of atom
interferometers. However, such gratings depend on the specular
reflection of atoms from smooth surfaces.

Atoms may be specularly reflected from surfaces when the de
Broglie wavelength corresponding to their momentum perpendicular
to the surface is much larger than the scale of surface roughness. For
a smooth surface, the reflectivity is determined by the one
dimensional atom wall potential. Theoretical predictions of
reflectivity are difficult, but they indicate that reflection should only
occur at transverse temperatures in the sub nK range. Despite this,
Anderson, etal (1986) demonstrated efficient specular reflection of a
thermal Cesium incident at angles of up to 40 mrad on a quartz
surface. In this experiment the perpendicular temperature was a few
mK, far larger than the theoretical predictions. Given this
contradiction, it seems prudent to temporarily disregard theoretical
questions, and attempt to gather more experimental data. Square
profile quartz diffraction gratings are commercially available with

rms roughness as small as 20 A. 1.D.ii  Fabrication of transmission

gratings.

The gratings used in our ‘88 demonstration of the diffraction of
atoms, were made by the sub-micron structures laboratory (SnfL) at
MIT. They were large area (-1 cm?2) 0.2 nm-period gold gratings,
which had been developed for use with soft x-rays. The grating
fabrication method is described in brief in our '88 paper (appendix
1), related fabrication processes are detailed in papers published by
our collaborators at the SnSL (Ceglio, Price et al. 1981, Schattenburg,
Anderson et al. 1990). We originally intended to make the first
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interferometer with these gratings, but unfortunately this proved to
be impossible. Instead, we were forced to develop out own grating
fabrication technology at the National Nanofabrication Facility (NNF)
at Cornell.

The quality of gratings necessary for an interferometer is
considerably higher than is needed to demonstrate diffraction of
atoms. In particular, the gratings must be phase-coherent over their
entire area. This implies that the grating lines must be straight to the
order of their line width over the full height of the grating, and that
the grating period be constant to the order of the grating period over
the width of the grating. The transmission of the grating support
structure (necessary to achieve the required line straightness) should
be high since the final interference signal will be proportional to the
third power of this transmission. In addition, the grating line to space
ratio must be near 1:1, ideally the grating spaces should be 0.65
period for the first grating and 0.5 for the other two. The SnL
gratings were unusable because the grating lines were not
sufficiently straight, and the grating transmission was too small.

The grating fabrication process which we developed at NNF will
be described in three steps. First, tensile membrane windows of
silicon nitride are formed in a silicon wafer. The windows are then
coated with a plastic resist, which is exposed with the grating pattern
using electron beam lithography. Finally, the pattern is transferred
from the resist to the nitride by reactive ion etching (RIE). The chief
difficulties are with distortions in the e-beam writing system, and
the insufficient selectivity of the RIE process. Our process is similar
to that developed by Lee (1984), who fabricated free-standing
nitride wires using a direct write e-beam with a positive resist.
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Coat with nitride by LPCVD then
photolihography and RIE.
silicon ——>
Wet etch in hot KOH
to make windows.
nitride/
T

Spin on PMMA then
deposit Au.

PMMA/AU — ——

e
50 KeV e-beam writing
to expose PMMA.

N

Wet development: Gold etch then
MIBK to remove the exposed PMMA.

RIE to etch through the nitride
leaving the completed grating.

Figure 1.1. Schematic of the grating fabrication process. All text
on the right describes the processes that transform the wafer between
the states depicted above and below the text. Si, nitride and PMMA are
indicated by the same patterns throughout.
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I now turn to a detailed description of the fabrication process at
a level intended for an experimental physicist with no experience
with nanofabrication.

We start with a 250 nm-thick, 3"-diameter silicon wafer with a
<100> orientation, which has been polished on both sides ("double
polished™). The wafer it then coated on both sides with ~150 nm of
amorphous silicon nitride (SizNg), using low pressure chemical vapor
depositor (LPCVD)8. When deposited in this manner, nitride is a hard,
stiff (elastic modulus ~3" 1011 Pa), and inert material. The nitride is
formed with a tensile stress of ~ 6.5 GPa. Because this stress may be
high enough to cause grating failure we also tried low-stress nitride.
Low-stress or “Berkeley” nitride is grown with an excess of Si by a
plasma enhanced LPCVD process. In this work we use two batches of
films: a 160 nm-thick stoichiometric nitride, and a 210 nm low-stress
nitride. The low stress nitride has about 1/10 the stress of the
stoichiometric nitride, and about 1/2 the tensile strength (Koskinen
and Johnson 1989).

The windows are made by first patterning the nitride on the
back side of a wafer, and then using a directional etch to remove the
exposed Si, leaving the membranes (fig. 1.1). In the first step of this
process a 4" Chrome photomask is exposed using a computer aided
design system to drive a 1 nm-resolution pattern generator. The
exposed pattern is an array of ~20 identical chip patternsona 12" 7
mm grid. Each chip has seven rectangular holes® that define the
windows, and ~70 mm-wide boundary lines that form cleave lines
used to separate the chips. Next, the back side of the wafer is coated
with 1 nm of photoresist which is then exposed with the Cr mask
using contact photolithography. Great care must be taken to avoid
scratching the front side of the wafer (which is the back side during
these processes), and to align the mask with the crystal axis of the
wafer. The nitride is then patterned by RIE using the photo resist as
a mask. Finally, the wafer it etched in a hot KOH solution. The KOH
etches about 50 times faster in the <100> direction than it does in the
<111>. | found that at 93°C the 4 M KOH solution etched through the
wafers in ~130 min. Surprisingly, overetching by as little as 10% may
destroy the membranes even though the nitride thickness is reduced
by less than 5% during the full etch time. We made windows in three

8 nitride deposition was done by Robert Soave at NNF, it is the only
process in which | did not do significant parts of the work.

9 The holes must be larger than the intended window size by 180 nm on all
sides (180=250/tan(54.77), where 54.7° is the angle between <100> and <111>).
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sizes, 40" 750, 120" 500, and 500 © 500 mm in both high and low
stress nitride.

The wafer is prepared for e-beam exposure by coating it with
~170 nm of polymethyl methacrylate (PMMA) film19, and then with
15 nm of Gold. PMMA is the standard high-resolution e-beam or x-
ray resist. Regions that are exposed to ionizing radiation are partially
depolmerized allowing them to be removed by a methyl isobutyl
ketone (MIBK) developer. The inherent resolution limit of
PMMA/MIBK combination is about 10 nm. We found that the Gold
was needed to reduce writing distortions caused by charging of the
substrate during e-beam exposure. After exposure the Gold is
removed with a standard 'Gold etch', and the exposed PMMA is
removed with MIBK.

The performance of the electron beam writing system is the
single most important factor determining the grating quality. We
require that the e-beam system write patterns that are coherent
over large areas, but care little about the quality (surface roughness)
of the individual lines. These requirements on the e-beam system
are significantly different from the tasks for which it is optimized. |
will therefore discuss the detailed causes of writing errors which
must be understood in order to optimize the system for our use.

An e-beam writer is similar to a scanning electron microscope in
that it consists of a of a tightly focused electron beam which can be
scanned over a small field on the target which is mounted on a micro
positioning stage. In the JEOL JBX 5DII that we used, the 50 KeV
beam is focused to a ~20 nm spot which is directed under computer
control within a 80~ 80 nm 'U’-mode lens field. The translation stage
position is controlled interferometricaly with a resolution of 2.5 nm.
Thus, in order to write a large pattern the 80 © 80 nm fields must be
written successively, and stitched together by repositioning the
stage. We then have two sorts of errors, the error within a single
writing field due to distortions in the lens or beam steering system,
and field stitch errors due to stage repositioning. The combined error
is estimated to be 30 nm rms, almost entirely due to field stitch
errorll The field stitch error is due to two causes, thermal drifts in
the work-piece dimensions, and variations in the height of the wafer

10 Difficulties are encountered in spinning on the PMMA if the front of
the wafer is not smooth enough or if there are any broken windows.

11 | ense distortions are removed automatically by using the system in
imaging mode to locate a spot on the stage which is moved through 64
subfields, generating a map of lense distortion which can then be corrected
for.
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relative to the focal plane of the lens. Thermal drift problems are
significant because we require length stability of ~20 nm over
lengths of ~20 cm (10-7) during the ~10 min writing time for a single
grating.

We attempted to mitigate the effects of e-beam writing errors
using several methods. The thermal drift problems can be reduced
by setting up the CAD package that drives the e-beam writer so that
single gratings are written using successive fields in order to reduce
the total writing time per grating. Distortions within a single field
that are caused by electric fields due to the charging of the substrate
during the writing process can not be removed by the automatic lens
distortion corrections. This problem is not usually encountered for
solid substrates, but we found that it caused ~50 nm sub-field
stitching errors with our thin insulating membranes. We solved this
problem by coating the PMMA with a thin layer of gold. We assessed
the field stitch errors by writing small sections of grating at the field
intersections, an then reading the relative errors with a SEM. Because
the errors were almost exactly the same at each intersection
independent of the time spend between patterns, we concluded that
the residual errors are caused by wafer height variations rather than
by thermal drifts. The effect of these errors on grating performance
is much worse if the field stitched boundary is parallel to the grating
lines than if it is perpendicular. Using this fact we were able to
reduce the effect of the height variation errors by defining our
patterns so that we never have to use an area of grating with a
parallel stitch. In the future the errors caused by the tilt of the work
piece could be reduced by sensing the position of markers on the
wafer and using these positions to correct for wafer tilt and thermal
drift under automatic control.

In the final step of the fabrication process, reactive ion etching is
used to cut slots through the nitride that is exposed between the
PMMA lines that have been formed by removal of the exposed
PMMA12, This is not easy because RIE would usually be expected to
etch PMMA considerably faster than the nitride. It is difficult to
make the PMMA lines have a height/width aspect ratio of more than
about two: so to make 200 nm-period gratings the PMMA lines must
be about 200/100 nm. Therefore in order to RIE through 175 nm-

12 1f we had been unable to develop a selective RIE process our plan would
have been to make metal gratings using a liftoff process (Kwong, 1989). We
wanted to avoid this because of the higher resolution of the direct RIE process,
as well as its simplicity. In addition, because of the relative brittleness of
nitride, we think that gratings make out of it are less likely to distort than
metal gratings when they are made freestanding.
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thick nitride with out using up all of the PMMA it is necessary that
the RIE etch the nitride at least as fast as the PMMA. In addition the
etch must be directional, that is the etch rate normal to the surface
must be a few times larger than the transverse rate so that the
PMMA lines will not be undercut.

In essence an RIE machine consists of a reaction chamber in the
from of a parallel plate capacitor, in which low pressure gases are
exited by RF to form a plasma of reactive ions. The sample rests on
the lower plate, and a DC bias of a few hundred volts is established
so that the sample is bombarded by ions with velocity normal to the
surface. In the 30 cm-diameter chamber that | used, the typical etch
conditions are, 30 mtorr of CF4 gas with a flow rate of 30 sccm, an RF
power of 200 W, and a DC bias of 300 V. With the above
requirements in mind | developed a more selective RIE chemistry by
systematically measuring the etch rates for varying the gas mixtures.
| finally settled on a 3:1 (by flow rate) mixture of Hy to CF4 at a
pressure of 15 nmtorr. With this method | measured etch rate ratios of
PMMA vs nitride of 1:1.8, that is selective etching of nitride. Figure
2.3 shows a completed 0.2 nm period grating.
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Figure 2.3 Gratings and zone plates made at NNF. The grating
period is 0.2 mm, the zone plate is 130 mm wide and has afocal length

of 0.6 matl =20 pm.

1.E Zone Plate lenses

Lenses for atom beams can be constructed by making gratings
with a period that varies linearly with the distance from the beam's
axis. Such lenses are called amplitude (as opposed to phase) zone
plates.

Our lenses were made using methods nearly identical to those
described above for gratings. We made cylindrical lenses in the 120

500 mm-windows using the same procedure as for gratings,
changing only the CAD file sent to the e-beam machine (see Fig 2.3).
Techniques similar to ours have been used to make zone plate lenses
for X-rays (Ceglio, Hawryluk et al. 1983), although in this case they
are phase lenses. Tennant, et al (1990) have constructed a spherical
zone plate lens for atoms, but have not yet tested it. There
fabrication method is similar to ours except that they used a Si
membrane (rather than nitride) and a more complex etch process.
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Our lenses were made with a focal length (f) of 60 cm for a
wavelength of 16 pm by making holes in the membrane where the
distance from the center line (d) satisfied the following formula.

2n p<;|Q giE (2n+1)f

We also made the complimentary structure, in which the lens has holes except

where d is as above. A completed zone plate is shown in figure 2.3.

\

<4——— 140cm —>» <4 60cm >

Figure 2.4. Schematic of the setup used for testing lenses.

The lenses were tested in our atom beam machine configured
without the second slit, so that the lens formed an image of the first
slit at the detector plane (Fig. 2.4). The results are disappointing (Fig.
2.5). We do not understand why the measured beam profile does not
resolve the interesting structure of the focal spot. This structure is
the sum of two components; the Oth order transmission through the
lens grating which forms a pattern of identical shape to that formed
by a slit of the same width as the lens, and the focused spot.
However, much of our disappointment with the results is due to the
intrinsic limitations of amplitude type zone plates.
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Figure 2.5. Data and and numerical model output showing the
focused spot formed by a zone plate lens. The crosses are the
experimental data (the line joining them is solely to guide the eye). The
lines are theoretical, the lower curve is the pattern formed by the lense
(assuming a 1/2 density support structure), the upper curveisthe
pattern formed when the lensis replaced by a dlit of identical size. The
model isfit to the data using only the mean position and integrated area

of the beam.
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2 Atom Optics: Theory

2.A General Quantum Mechanics

What is the correct quantum mechanical treatment of spatial
interference phenomena in atom beams? At first glance the problem
may seem trivial—thermal beams are nonrelativistic, and we are able
to treat the atoms as point particles. It is reasonable to neglect the
particle’s internal structure because the potentials in the system are
assumed to either be very smooth on the scale of atomic dimensions,
or to be perfectly reflecting or absorbing walls. Thus we may neglect
the atom’s internal structure except for an adiabatic dependence of
the internal energy on some external potential. Therefore it appears
that we may just apply the Schrodinger equation for a single particle
in a slowly varying potential. This presents no conceptual difficulties,
only the technical difficulties of integrating the equation for given
boundary conditions.

In fact the problem is not so easily solved, the difficulty is the
specification of the initial state. This is the question alluded to In
chapter 1.B: is the momentum distribution of a beam from a thermal
source sufficient to determine the quantum state of the system? To
further focus the question we may take “sufficient to determine the
state” as determining the state well enough to predict the results of
experiments. This is basically a question of the a priori existence of
wave packets. That is; might a beam with a momentum distribution
s(k) be composed of a statistical ensemble of wave packets with a
different (narrower) momentum distribution?

These questions can be stated more formally in the following
way. Consider a beam emitted by a thermal source propagating in
one dimension. If we measure the wave vector distribution s(k), we
are measuring the average value of |<k|y |k>|2, where y are the pure
states in the ensemble. This is equivalent to a determination of the
diagonal elements (populations) of the density matrix r in the |k>
basis. Experimentally we might investigate this system by looking at
interference in X, that is at the coherences of r in the [x> basis. If
there are no coherences in the |k> basis then the populations in |k>
determine the coherences in [x>. The questions is: what are the
coherences of r in the |k> basis?

I do not know the answers to these questions. In this experiment
we have always assumed that the velocity distribution determines
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the problem. We model our source as a luminous area which emits an
ensemble of plane waves described only by their scalar velocity
distribution and brightness. The beam is defined by the slits and the
source. This assumption seems fully justified because the potentials
in our interferometer are time independent, and because the
quantum density is so small. | have no confidence that this
assumption would be justified in cases where their are time
dependant potentials inside an inerferometer. Time dependant
potentials may probe the coherences in r (k) by introducing phase
shifts between different k's. These assumptions must fail if the
qguantum density approached or exceeds unity, or if one measures
correlations between counting rates.

In this thesis | present two types of theoretical work. The first is
detailed work on the solving the Schrodinger equation for the
boundary conditions of our apparatus. This is handled in the section
on numerics. | have also done less focused work on the question of
how to treat the case where the quantum density in not small. This is
treated in the section of correlation experiments.

2.B Numerics

In physics we consider an analytic knowledge of the
fundamental equations to be both satisfying and necessary for a
useful understanding of a system. However this is not sufficient;
numeric modeling is a necessary basis for the precise prediction of
experimental results. This is true because the boundary conditions of
real world experiments seldom allow analytic solution of the
fundamental equations of the theory. Thus, accurate prediction of
experimental results, which is the basis for belief in the theory, must
rest on numerics. For many real problems (e.g. fluid mechanics), an
analytic knowledge of the theory may be insufficient to form even a
rough understanding of the behavior of the system, let alone to make
accurate predictions. In this light | find it somewhat disturbing how
little numeric theory | was exposed to during my education; |
suppose it lacks glamor.

2.B.i Motivation
In this experiment we modeled the two dimensional spatial
interference patterns formed by systems of slits and gratings. We
were motivated to construct a numeric model of our experiment
because we were unable to answer certain basic questions
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analytically. We are not yet concerned with making a quantitative
comparison of experiment with theory (in this case the Schrodinger
equation)13. Rather, we wish to make approximate predictions of the
fringe contrast for various configurations of the interferometer, and
we are unable to arrive at sufficiently unambiguous approximations
by analytic means4.

The original motivation for attempting a numeric simulation of
our interferometer was simply to assure ourselves that it actually
formed achromatic fringes. Later numeric work examined a number
of more complex questions.

1. What is the contrast as a function of the inequality of the spacing of
the three gratings?

2. How does the contrast vary with the width of the slits and is there any
contrast with no glits?

3. How do zone plate lenses perform?

2.B.ii Stating the problem

The first step is to start with the basic theory, and to introduce
sufficient simplifications of the physical system to generate a precise
statement of the problem which can be solved numerically. We wish
to solve the problem depicted in figure 2.1, a two dimensional model
of our interferometer. In our notation the planes are named s, g; etc,
and the x variables within the planes are xg etc. We also use gn (X) to
denote the transmission function of the grating or slit at the g plane.
In the actual experiment the second slit and the first grating are
separated by ~6 cm, in the model they are lumped together in the g1
plane. Similarly for the source and the first slit which are separated
by 21 cm.

13 Such comparisons have been made for neutron interference patterns
as a test of the linearity of quantum mechanics (Zeilinger, 1988).

14 1t is clear that no complete analytic solution exists because the gratings
are in the near fields of the slits. The problem is to find analytic arguments
that allow useful but incomplete prediction.
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Figure 2.1. Anidealized model of the interferometer showing
selected beams. The planes are named s, g etc, the variables within the
planes are X etc. The actual dimensions are: lengths, Lo=.8 m, L1=0.65
m, and a ~ 0.005; wavelength | =2” 10-11 m; and period d=2" 10-"m.
The diffraction angle isqgi=I /p=10-4 rad. For the numeric model we

define a maximum width w, and from that a maximum angle gmax=w/L o.

The first approach is motivated by the Feynman treatment of
guantum mechanics (Feynman and Hibbs ). We wish to calculate <d|s>
the amplitude for a particle to go from the source to detector.
According to the basic principal of quantum mechanics this
amplitude is proportional to the sum of amplitudes to go by all
possible intermediate paths. This naturally leads to a discrete
problem. We generate a set of paths by placing a grid of points in
each grating slit and then forming the set of all connecting paths that
go through one point on each plane. There are two problems with
this approach. The first is with the normalization, which is trivial for
finite sets of points. More serious is the question of what to use for
the amplitude to go between points in free space. The correct
Feynman picture is of course an integral of eiA/h over all paths in
configuration space where A is the classical action. It is tempting to
assume that we can just use eliA/h which in this case is just eikr, for
propagator. As we will show in the next section this is incorrect, but
turns out to be a good approximation for our problem.

A more rigorous approach is to start with the Schrodinger
equation for a free particle
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LTy(rt) _ 22
== =2LNy(r,t
Tt 2m y(r )_ (2.1

The equation istrivially separated by taking Y(r, t)= €="f(r) and k2=2mE/h2 to
get
(N?+k2)f (r)=0, 2.2)

Thisisjust the Helmholtz equation, the basis of scalar diffraction theory, the
theory of light propagation when the vector nature of the EM field isignored
(Marion and Heald 1980, chapter 12). Therefore we can use all the mathematical
tools developed for the optical problem. We want to solve the Helmholtz
equation under the boundary conditions of our interferometer: that is, wave
propagation through a system of perfectly absorbing perforated screens. These
boundary conditions are not easily incorporated into the Schrodinger equation
because particle absorption is equivaent to a measurement. We will ssmply
assume!s the Kirchhoff boundary conditionsfor f directly behind athin
adsorbing screen:

1. Behind aholein the screen f and Nf are the same as they would be if

the entire screen were not present.

2. Behind a solid part f and Nf are zero.
From the Helmholtz equation with the Kirchhoff boundary
conditions we derive the usual Frensnel-Kirchhoff diffraction integral

fx) b kf €M1 0y + eppmy e
51 (2.3)

where terms of O(r-2) have been dropped, and the meaning of the symbolsis
indicated in figure 2.2. We note that the (e + €)x terms make thisis essentially
different from what we would have derived by a naive application of the

Feynman method (or Huggens principle).

15 The Kirchhoff boundary conditions are rigorously incorrect even for
the optical case, there only justification is that they seem reasonable and
correctly predict experiment.
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Figure 2.2. Notation for the multiple plane diffraction problem. rq
is the length of the path along unit vector e; etc, smilarly x; isthe

position in the surface s ;.

In our calculation we want to solve problems with two or more
opaque screens as in fig 2.2. In general this results in a M-
dimensional integral of the form

N
f(sgu O €M Xy Xreo) (DM

n=0 et
M screens (2_4)

Where the g functions are the Stokes inclination factors given by

A Xn,Xn+1,Xn+1) = (En+1 + €n42)Pne1, and Nl |, X1,X2, ...d } We want f (s, d) for a
given source point s, so the computational difficulty for this problem scales as
NM+1 where N is the number of discrete pointsin each surface, and M isthe
number of surfaces. Since we want to solve problems with up to three surfaces

thisis much too hard.

Because f and Nf xn at a surface are sufficient to determine the f
and Nf at the next plane (using the Helmholtz-Kirchhoff integral) we
know that it must be possible to do the whole problem in O(mN?2)
time.

Instead of writing the integrals for f at each plane we make the
simplification by using the small angle gmax to ignore all the
inclination factors which are proportional to gmax2. We justify this
approximation by noting that gmax»10-3, and the angles which

contribute significantly to the sum are ~10-4 radians.
With the further restriction that the surfaces are parallel planes
we arrive at the following general form for two gratings:
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fdd u f gl(xl)f g x2)fids - X)fi{X1 - X2)far{x2 - d)xodxq
1 g2

g (2.5
where | (x) are the free space propagation factors
fi(x) = gkl L? (2.6)

The assumption that the planes are parallel simplifies Eq. 2.5 by
allowing us two write the free space factors as f| (Xn - Xpn+1) rather
than as fL (Xn, Xn+1). This will be important later because it makes the
integral look almost like a convolution. Our function fg(d) is
equivalent (ignoring normalization) to the amplitude to go from s to
d, <d|s>. The intensity pattern at the detector plane is the usual |f (d)[2.
To calculate the intensity distribution P(d) generated by an
incoherent source with transverse profile s(xs) we repeat the
calculation for many source points

¥ w/2
Rd :j dkj s(K xglf ddf?axs
-¥ -w/2 (2_7)

where s (k) isthe velocity profile of the source and s(xs) isits transverse

brightness distribution.

The sum of probability densities (Eq 2.7) seems to increase the
computational difficulty of the problem by at least another factor of
N. We cant simplify this sum, and tricks based on using random
initial phases fail because the coherences are not removed. However,
because there is no coherent addition it is not necessary to do the
sums over a large number of points. We have found that a 100
source points is usually adequate as long as they are distributed in a
non-periodic but reasonably even fashion. Our algorithm assigns
nearly random values of position and momentum to each source
point, while taking care that the final distributions are approximately
correct?s,

2.B.iii  Numerical method: how to do it fast
The naive way to integrate equation 2.5 would be to replace the
continuous variables x with discrete variables xn, and so to convert
the integral into a sum.

16 This elaborate procedure, and other tricks such a choosing not quite
integer values for the constants, are designed to ensure that no unintentional
symmetries are introduced into the problem.
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The number of points required may be estimated by noting that
the discrete grid acts just like an additional fine period grating. We
must make the period of this imaginary grating fine enough that only
its Oth diffracted order contributes significantly to the sums. With
the maximum angle in the problem gmax=w/L as defined above, we
must have

ILN 559

w2 (2.8)
For our wide simulation w=10-3mm, L=1m, and| =2" 10-11 m we must have N=106
to get a product of 20. Therefore to integrate the problem for one source point
will take about 1012 floating point operations which takes the CRAY -2 (~108
flops) about three hours. Thisis much too slow: we must find a more efficient

algorithm.

We can reduce the difficulty of the computation to O(mNIog(N))
by writing the discrete sums as convolutions which can be done by
the Fast Fourier Transform (FFT) algorithm in Nlog(N) timel7. | will
present this technique in detail because it does not seem to be
known in the community of people solving similar problems of
matter wave interferencel8, although | strongly suspect that it must
be common knowledge to experts in scalar diffraction theory.

We want to turn Eq. 2.5 into a convolution. We first go to the
discrete case, taking f, and f, as the discrete (N point) values of f g(x)
and f_(x). The problem?? is to calculate ', the amplitude at a given
screen, from f, the amplitude at the previous screen, and f by

X N°-1 .
fi=a fjfj_i, withf=f_
i=0 (2.9)

If we break up the sum and use the symmetry property explicitly, this can be

written as

17 The germ of this idea was planted during a conversation with Michael
Haggerty, who’s help | gratefully acknowledge. Later development of the
algorithms and and especially of the code was done as a collaboration with
Quentin Turchette.

18 personal communications from Anton Zeilinger and John Clauser.

19 My description of the this algorithm is partially copied from Quentins
Turchette’s undergraduate Thesis.
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A g N°-1
Fi=a fifiy +a fifii.
=0 j=itl (2.10)
We wish to write this as a discrete convolution, defined as:
N-1
(@Ab)i=Q abi
=0 (2.11)

where b must be periodic, that is bj=bj+nn N=0, 1, 2, ... . We can use the periodicity

to break the sum as before
i N-1
(@Aby=a abij+ & abijw
i=0 j=i+l (2.12)
We want to demonstrate how equation (2.9) can be converted to
convolutions of the form of equation (2.11). Since the discrepancy
between the equations lies in the periodicity, we first attack this

problem. Define vectors f N and fNwhich have twice as many

elements as their corresponding N-vectors. We choose f N to be
defined as:

N f fi, ki [O,N-1]
| o wmeng (2.13)
and solve for the f?N necessary to make a convolution of the 2N-vectors yield the

results we want. The definition of the discrete convolution requires periodic

symmetry of 2N,
) 2N-1
(F ANy g f Y, R =fidon n=0,12; -
=0 (2.14)
We can once again split up this sum as:
) i N-1 2N-1
(AR =& (V4 & FPEN e 3 1PN
=0 jmi+l =N (2.15)

Using the definition of f N we see that the last term is
identically zero and that the f Nin the first two terms is simply f.

Exploiting the periodicity of f?N the convolution can be written
i N-1
2Nj# _ 9 2N, 2 2N
(F AN =g fif5+ a fiffn
0 jitl (2.16)
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Thus it is seen that with the proper definition of 2N the sum in
Equation (2.9) can be made to match that of Eq. (2.11). This forces f2N
to be defined as

N = | fi, ki [O,N-1]
K ‘ f2|\|_k, Kl [N+1,2N-1] (217)
With this, we see that
¢ .
fi=(f NAfN), (2.18)

Thus we have transformed equation 2.9 into a convolution of
vectors with 2N elements. We can now apply the discrete convolution
theorem which transforms the Fourier transform of a convolution
into the product of the Fourier transforms of its elements.

Because of the magic of the FFT algorithm this method
represents an enormous simplification of the original problem. By the
naive method our calculation took O(mN?2) floating point operations,
by the FFT method it only takes O(3" 2Nlog(2N) + 2N) steps because
one must do three 2N point FFTs and one 2N point product. For
N=106 this represents a time saving of ~104, which allows us to do
the calculation for a single source point and velocity in ~10 sec on the
CRAY-2.

2.B.iv  results

We first confirmed that an interferometer with ideal geometry
will produce high contrast fringes from a source with a 12% FWHM
velocity distribution. Figure 2.3 shows the calculated interference
pattern at the plane of the third grating. The interferometer
configuration was like that described in fig 2.1 except that Lo=1 m,
and L1=0.5 m, both slits were 20 nm-wide. This interference pattern
was calculated by incoherently summing 100 source points in the
pseudo random manner alluded to above. The calculation was done
with N=106, that is 210 points per grating period, it takes ~20 min on
the CRAY. From this pattern we then calculated the contrast
measured by a detector masked with a square wave grating. Because
the square wave grating is sampling a sinusoidal interference
pattern, the measured contrast for is only 2/p (0.63) times the
contrast of the interference pattern formed at the detector grating
plane. When 25 mm-wide detector is located in the middle of the first
order the contrast is 56%.
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Figure 2.3. The calculated interference pattern formed at the
position of the third grating. The three plotted lines are the average,
local maximum, and local minimum. Note the large fringe contrast on
the 1 and +3 orders. The horizontal scaleisarbitrary. The faint

asymmetry in the pattern is due to the random nature of the source.

The next question we addressed was the variation in fringe
contrast as a function of the inequality in the spacing of the grating
planes. We investigated this by calculating the interference pattern
at various longitudinal positions of the detector plane (values of a in
fig 2.2). In order to reduce numeric “noise” we then searched for the
best contrast as a function of the transverse position of a 25 mm-wide
detector. To save computation time we used the interference pattern
from a point source to calculate the contrast at a wide range of
misspacings. These data are plotted in figure 2.4. We then checked
the dependence of these results on the fact that we that we used a
point source by doing the full computation for a few values of a.
With a configuration identical to that used for fig 2.3 the contrast
was 56% for equal spacing and was degraded by 18% at a +2%
misspacing. Since we can easily arrange the gratings to be equally
spaced to better than 1% we predict that spacing errors will not
significantly affect our contrast.
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Figure 2.4. Calculated fringe contrast as a function of the position
of the detector plane. The lineisaLorentzian fit, its only purpose isto
guide the eye. Point source illumination with Lo=1m, L1=0.5m, and a

first grating width of 20 mm.

The most interesting question concerns the grating contrast as a
function of the width of the collimating slits. The slits serve to define
the beam so that the interfering orders are distinctly separated at
the middle of the interferometer. This beam separation is necessary
for many applications of atom interferometers (see chapter 3.A.2), in
fact we have taken it to be implicit in the definition of an
interferometer. However, if fringes of reasonable contrast were
formed without collimating slits, this would be useful because of the
greatly increased flux. The flux in a beam defined from a luminous
source by two slits and a detector scales quadratically with the slit
and detector widths, while the angular resolution decreases linearly.
One practical application of operation with wide slits would be
greatly facilitated alignment and testing of the gratings and of the
vibration isolation systems. The gratings could be more quickly
aligned by maximizing the detected fringe contrast, and when
aligned, the comparison of measured and calculated contrasts would
be a test of the coherence properties of the gratings.
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We now?20 believe that interferometers with wide collimation
slits, that is interferometers in which there is no spatial separation of
the beams, do produce good fringe contrast. Figure 2.5 shows the
results of a recent calculation in which both gratings had a width of
80 mm and the source slit was 200 nm. The calculated contrast is 35%
when masked by the third grating. In this case the total flux is ~5
times that calculated for the case of 20 nm slits.

1.0 —

0.8 —

0.6 —

0.4 —

0.2 —

0.0

-1000 -500 0 500 1000
Transverse position at the detector planein mm

Figure 2.5. The interference pattern formed with 80 nm wide
collimating dlits. Asin Fig 2.3 the three curves are the local maximum,

minimum, and mean.

20 ynfortunate we have only recently reached this conclusion. We had
previously believed that such configurations did not produce high contrast
fringes.



38

3 Atom Interferometers

3.A Introduction

3.A. History of Matter wave interferometers

Optical interference phenomena were first described in Newton’s
day. Optical interferometers began to be used for measurement (that
is other than as objects of study in them selves) at the end of the last
century. A notable example is the Michelson-Morley experiment.

The first interferometers for material particles were realized in
1954 with the near simultaneous demonstration of two kinds of
electron interferometer. Marton used a three crystal geometry, and
required 1230 6 min exposures to find interference. Marton argues
in the paper (1954) that a two slit geometry would be “almost
impossible”. A single wire (or double slit) biprisim was demonstrated
by Mollenstedt in the same year.

In 1962 Maier-Leibnitz demonstrated the first neutron
interferometer, a simple biprisim. It was 10 m long but was only
able to separate the beams by 60 nm. Due to the low flux through
this design, little was done with it. The first perfect crystal neutron
interferometer was demonstrated by Rauch in 1974. Interferometers
of this type use three crystalline diffraction gratings that are aligned
by virtue of being cut from a single perfect crystal, and typically
enclose an area of a few 10’s of cm2. Many such neutron
interferometers have now been built, and a large body of work has
been done, using them to study (or demonstrate?) basic quantum
phenomena. Some highlights are; coherent spinor rotation (Rauch,
Zeilinger et al. 1975), effect of the earths rotation (Sagnac effect)
(Werner, Staudenmann et al. 1979), and the measurement of the
phase shift due to the gravitational field (Colella, Overhauser et al.
1975, known as the COW experiment).

The first observation of diffraction for atoms was by Estermann
and Stern in 1930. They observed diffraction peaks in the scattering
of H> and He of a cleaved Li F surface. In the 1980’s the advent of
light force slowers for atom beams made atom interferometers seem
more realizable. It is surprising that the first atom interferometers
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were not demonstrated until 1991, and that none have yet used
laser cooled atoms21,

3.A.ii Applications of Atom Interferometers
Applications of atom interferometers, and indeed of matter wave
interferometry in general, fall into three categories.

1. Measurement of inertia effects such as rotation, acceleration, and
gravitational gradient.
2. Fundamental guantum mechanics and measurement theory.
3. Measurements of particle properties.
Discussion about which technologies are best for making atom interferometers are

only fruitful in the context of the intended application.

In the measurement of inertial effects the one goal of
interferometry is precision. Interferometers are only interesting in
this application in so far as they out perform the alternative
methods. An interferometer with simple geometry (separated beams
are in a plane, and form only one loop) is sensitive to rotations in
inertial space with sensitivity (rads of phase shift per unit of angular
velocity) 4pAm/h, where A is the area of the loop, and m is the
particles mass. The equivalent sensitivity for an optical gyro is
pA/| c, the ratio is therest mass of the particle to the energy of the
photon, so this looks promising. If the interferometer made using
diffraction gratings as beam splitters, and the angles of diffraction
are less that a radian so that we can take sin(x)=x, then the
sensitivities can be expressed differently. The rotation sensitivity is
4pl2/dv, and for accelerations it is 2pl2/v2d, where d is the grating
period, | the distance between gratings, and v the atom’s velocity.
These expressions are useful because they apply to all
interferometer currently under construction, and they are expressed
in terms of the quantities most directly controlled by
experimentalists. The ultimate sensitivity of the device depends on
the intrinsic phase shift due to the effect one wishes to measure and
the flux of particles through the interferometer. The precision of
fringe measurement is proportional to the square root of the total

21| assume that this is due to the generaly poor brightness of existing
slow atom sources.
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number of particles counted. A detailed and interesting discussion of
atom interferometers as inertial sensors is found in Clauser (1988).

Many of the basic questions about the foundations of quantum
mechanics, that is of measurement theory, are naturally posed as
questions about interference experiments. Matter wave
interferometers are fundamentally different from their optical
cousins because there can be no correct nonrelativistic (single
particle) analysis of optical interference.

It is unfortunate that the interference phenomena most familiar
to physicists occur for a system, light, for which thereis no
nonrelativistic approximation: one can introduce nonrelativistic
wave functionsy (r) for aslow electron, but not for a photon, which
Is fundamentally relativistic. (Cohen-Tannoudji, Dupont-Roc et al.

1989, p205)

This fundamental simplicity of matter wave interference may
allow cleaner tests of measurement theory. Compared to other
massive particle interferometers, atom interferometer have many
advantages for doing measurement theory experiments. These
advantages rest on the ease of producing and manipulating intense
atom beams (see chapter 1.1). Light beams can now be prepared in
number states, coherent states, and mixed states. Existing particle
beams are superpositions of number states with low occupancy
numbers, in the near future atoms may be prepared in bose
condensed, high-quantum density states (although | can not imagine
how to produce a matter wave coherent state).

Atom interferometers may be used to probe the internal
properties of atoms. Such experiments depend on the ability of
interferometers to measure the phase shift due to a particle’s
interaction with a field that is localized on one side of the
interferometer. Such probes of an atom's interaction with an external
field are different from those done with conventional optical
methods because they measure the energy shift of the whole atom
(in whatever superposition of states) vs the undisturbed atom. In
optical measurements it is always necessary to measure relative
energy shifts by means of some interference of internal states.
Possible measurements of atomic properties include, the
measurement of ground state polarizabilities which is a useful test of
atomic structure calculations.
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3.B Our Interferometer

3.B.i Introduction

I now turn to a detailed description of our atom
interferometer—the core of this thesis. | intend this description to
include some of the dynamics of design, the reasons for decisions and
the mistakes, in addition to the statics, the description of the device
on the day it first worked. Initial design work began at the end of
1988, soon after our diffraction experiment (appendix 2). The basic
mechanical design was completed in the first months of ‘89, and the
whole experiment was first assembled in July of that year. Much of
the next year and a half was spent attempting to solve problems
with the SnBL gratings, and with improving the atom beam system.
By the end of ‘90 we realized that it would be impossible to make the
interferometer work with the SnSL grating technology, and so in
early ‘91 we began fabricating our own gratings at NNF. This proved
to be easier that we had expected, and we were able to use the new
gratings to demonstrate the interferometer for the first time in late
February ‘91.

The design work began with the boundary conditions that we
use the SnBL 0.2 mm-period gratings, and make the minimum
modifications to the existing atomic beam apparatus. Thus the goals
were as follows.

1) The interferometer must be less than about 1.5 m long, so asto fit
inside the existing beam tube while still permitting the machine to be
used for light force experiments. The x position22 of the gratings must
be controlled so that they can be individually moved in and out of
the beam line in vacuum, and repositioned with a accuracy of ~10 nm.
Thisis because the good areas of the gratings may be small and itis
necessary to find them by looking at the diffraction patterns from one

grating at atime.

22 \We use a coordinate system where z is along the direction of the atom’s
motion, and y is upwards along the grating lines.
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2) The grating lines must be aligned parallel to each other to ~10-4 rad
which isthe ratio of the grating-period to the beam height.

3) Given the sensitivity to accelerations, displacements and rotations
discussed above, the gratings must be stable with respect to
vibrations such that the resulting interferometer phase noise be a

small fraction of afringe.

3.B.ii Plans: the details of experimental design

The interferometer is build on three translation stages that are
attached to vacuum flanges which are mounted on existing ports
along the main tube of our atomic beam machine. This is a key
design compromise. The primary alternative is to mount the gratings
on a single bar which can be removed from within the beam tube.
Such a design would make both vibration isolation, and grating
alignment easier. We did not take this route because of the extensive
redesign of the beam tube that would have been necessary to make
sufficient room for such an apparatus. Mounting the gratings on
flanges necessitated an active-feedback vibration-isolation system,
and the ability to align the gratings in situ. However, we have
subsequently realized that the advantages of an active system, such
as much reduced thermal drift and direct measurement of the
relative grating motion, are large enough that it probably would be
necessary to construct one even for the single bar design.

A schematic of the whole experiment is shown in figure 3.1. We
use an optical interferometer to measure the relative transverse
displacement of the gratings, and to generate an error signal for an
active vibration isolation system. Figure 2.1 shows another
idealization of the interferometer, in which the diffracted beams are
more clearly indicated. For reference, the longitudinal (x axis)
dimensions are; beam skimmer to first slit 21 cm, first to second slit
83 cm, first slit to first grating 89 cm, distance between gratings 66.3
cm, and finally the distance from the last grating to the detector is 29
cm.

We used commercial translation stages (NRC model 425) which
were chosen so that the pitch error (in our case z axis rotation during
X axis translation) is less than 104 rad over 1 cm. This pitch
specification is necessary to allow grating translation after alignment.
The stages are mounted on aluminum bars projecting down from the
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flanges. Aluminum base plates mounted on each stage hold the
home-made rotation stages for the gratings. Each base plate is
different. On the first (nearest the source) the grating rotation stage
is controlled by a encoder mike (see below) and there is one optical
grating whose z axis rotation can be controlled by a hand
micrometer. On the middle stage the grating rotation is effected by a
PZT and there are two fixed optical gratings separated by ~12 cm. On
the last stage the grating angle is controlled by a differential
micrometer and there is one optical grating on a rotatable mounting.
In addition the base plate on the last stage has a photodiode
mounted ~2 cm behind the optical grating. The x axis position of each
stage is controlled by a encoder mike, but the middle stage has a PZT

in addition.
Translation reference
20 pm ~ 3mm P
slitsl m apart. Z Photodiode
N . \
| |
: T T |
—1 L — : 0
| —1 I
‘% 0.6 m o6m—m—
Na source: He
2 bar Ar with a Ne Detector: 25 pm
few mbar Na. { 0.4 um-period 3 um-period Pt/Ir hot wire
atom gratings optical gratings

Figure 3.1 A schematic of our interferometer showing the active

vibration isolation system. Not to scale

The gratings, slits, and detector are moved by micro-positioning
motors under the control of an IBM PC-AT computer. We use DC-
motor-driven micrometers with drive-shaft rotation encoders. The
computer senses the shaft rotation and sets the voltage applied to
the motor so as to control the micrometer positions23 (i.e. a closed

23 The motor control electronics were built by us as a cost saving measure
(counting our cost as ® zero). They consist of TTL circuitry to transform the
guadrature output of the encoders into directional (‘right’ or 'left") pulses, and
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loop control system). There are eight such micro-positioners. Five are
needed to control the x positions of the gratings, second slit, and
detector. Two more are used for rotation of the second slit, and of the
first grating about the z axis. The final one is used to control a slit
oriented along the x axis at the position of the second slit, which is
used to control the height (y axis) of the beam. Most of the micro-
positioners are "encoder mikes" made by Oriel, which combine in a
single unit the micrometer, motor, and encoder. Two (on the second
slit) are home-built combinations of a geared DC motor and encoder.
A closed loop control system using DC motors was selected over an
open loop system with stepping motors because of its ability to sense
failures. In addition geared DC motors generally have smaller size,
and lower stray-magnetic fields that do steppers.

In addition to controlling the motors, the computer records the
atom flux on the wire by counting the pulses generated by the CEM
in the detector, and can record the voltage from the photodiode
sensing the intensity of the laser-interferometer signal. We have
developed data taking software that keeps track of the motor
positions and allows any motor to by moved while recording the
atom-count rate so as to generate a profile of the beam. In addition
the computer can simultaneously record the atom counts and the
photodiode voltage (the only way we have taken interference data to
date) or it can control the voltage input to the lock loop while
recording the counts. In any data taking mode the computer can
continuously record the atom counts in bins as small as ~1 msec in
order to allow subsequent filtering of the noise bursts from the hot
wire.

3.B.ii.1  Inertia noise

The interferometer is sensitive to inertial noise (vibration and
rotation) which must be eliminated in order to observe stable
fringes. | am concerned here with noise at frequencies above the
reciprocal of the integration time used for phase measurement, so
that it affects the experiment as a loss of fringe contrast rather than
as a drift in the measured phase. Low frequency (<10-2 Hz) phase
noise is treated in the section on data analysis. The method for
calculating contrast loss caused by any frequency of phase noise is

a multiplexing system so that seven motors can be under computer control at
once. A "Scientific Solutions" data taking board in the PC-AT counts the
directional pulses, and sets digital lines used by our electronics to select the
multiplexer channel and to set the DC voltage applied to the motors.
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outlined in Eqg. 3.11. Here | deal with inertial noise at frequencies
above 10-1 Hz.

Three kinds of inertial noise are relevant, and must be controlled

in order not to loose fringe contrast. Numerical values are for the
(yet unrealized) 0.2 mm-period interferometer except as indicated.

1. Acceleration. The interferometer has a sensitivity (radians of phase

shift per unit of acceleration) given by
opat 2V 6-8cogwt ) + 2cog2wt )
P (wt )2 (3.2)

wheret isthe transit time between gratings ~0.7 msec, p isthe grating

fd{w,a) =

period, and | assume a(t)=ae'Wt. This gives a sensitivity of 260 rad m-1
sec? for a-x at zero frequency, which decreases roughly proportional
to f-2 for frequencies over ~250 Hz, This equation (and 3.2) can be
deduced by considering the acceleration sensitivity as being due to
the motion of the gratings during the atom'’ s transit through the
interferometer.

2. Rotation. The sensitivity for rotation (Sagnac effect) normal to the

plane of the interferometer (y axis) is given by.

_ 4pQrl SiN©/2)
Palo.Q) =05 (3.2)

where W(t)=Weiwt and t and p are asin Eq. 3.1. This gives a sensitivity

of 104 sec (that israd/(rad sec'l) at zero frequency.

3. Relative trandations, while not truly an inertial effect, may be caused
by the machine bending in response to inertial noise. The sensitivity
to relative motions along the x axisis (2p/p) at al frequencies. The
phase shift as a function of the x axis positionsis

(l) :ZFp(X1'2X2+X3) (33)
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Which can be deduced from simple symmetry argumentsz4.

Inertial noise enters the machine through the floor or the
vacuum hoses, and it is generated in the machine by vacuum pumps.
We control the noise by isolating the machine from the floor, by
reducing the effect of pumps, and by servoing out relative motion. A
typical acceleration spectrum of the floor is shown in figure 3.2.

400 -
g

< 300 —
:.N

I
(%; 200 —

0 — I I I I I |
0 50 100 150 200 250 300
Hz

Figure 3.2 Acceleration spectrum of the floor near our experiment.
Data are for transverse (x axis) motion. The rms acceleration is0.8” 10-3

m sec2, rms motion above 5 Hz is 50 nm.

We measure the acceleration with a accelerometer consisting of a
peazo-electric force transducer attached to a free mass. We use
Endevco model 7707-1000 accelerometers, which generate a charge
proportional to a. These devices have no sensitivity at DC, and in
practice25 their low frequency response is determined by the
amplifier, and the high frequency limit is determined by internal
resonances at ~8 kHz. After some effort designing low-noise, low
leakage-current amplifiers we are currently able to achieve useful

24 Symmetry argument: translation as a unit must give no phase shift, the
effect of moving x1 and x3 must be equivalent since the wave equation is

reversible. Because this argument applies to any three-grating interferometer
(e.g. higher orders, multiple orders, phase gratings) it is also true for our
optical interferometer.

25 In theory, the low frequency limit is set by the internal series

resistance of over 10 GW giving a 1/RC of 3" 10"3 Hz.
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data at frequencies as low a 0.1 Hz. Figure 3.3 shows a schematic of
our accelerometer amplifier circuit. These accelerometers have very
low intrinsic noise floor2é of about 10-6 m sec2.

accel erometer
100 k
C=5000 pF _oDE
Sensitivity is 1 nC/g op 41
2k
—— | 200M op 77
|
VY VY VY

Figure 3.3 Schematic of our accelerometer amplifier. The value of
the 200 MW resistor is chosen based on the input bias current of the
op41 so asto minimize the total noise figure of the amplifier. Thiscircuit

produces asignal of 1V per m sec2 for the Endevco 7707-1000.

Angular acceleration can be measured by taking the difference
signal between accelerometers mounted on opposite ends of a rigid
bar. This difference signal Da(w) has magnitude wwW where | is the
accelerometer separation and W(t)=WeiWt, | have constructed such a
sensor with a one meter long bar and a common mode rejection ratio
(CMMR) of >100. By demanding that Da due to rotation be 20 times
larger that the background arms/CMMR we can derive the rotational
noise floor for this device:

Bnoise »10% Sec'1
CMMR 10" wl W (3.4)

Thus with this device we can detect rotation noise at a level that
would be relevant to the interferometer (104 sec1) at frequencies
down to ~0.5 Hz. This means that it should be possible to detect any
rotation noise that matters because the rotation noise is generated at
~5 Hz (see the last paragraph of this section).

The relative position of the three gratings is measured using a
optical interferometer. The HeNe-laser interferometer uses the same
transmission grating geometry as the atom interferometer. The 3.3

Whoise=

26 This data was supplied to us by members of Rainer Weiss’s laser-
interferometer gravity-wave group at MIT. They are masters of vibration
isolation who provided us with much valuable advice including recommending
these accelerometers to us.
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mm-period gratings for the optical interferometer are mounted on the
same three translation stages as the matter wave gratings in order to
record the relative alignment of the matter wave interferometer. We
use a photodiode to sense the intensity of one of the interfering
beams behind the third grating. The optical interferometer phase is
given by Eq. 3.3 where p=3.3 nm, and the x’s are the stage positions;
the intensity is then proportional to (1+csin(¢)) where c is the
(experimentally determined) contrast. The “relative position” of the
three gratings is calculated by inverting the intensity equation to
find the phase (see Eq. 3.13) which is then multiplied by p/2p. Figure
3.4 shows a frequency spectrum of this position noise.

40 -
30 -
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Figure 3.4. Position amplitude spectra showing the effect of the
active vibration damping system. The dashed line shows the relative
grating motion measured by the optical interferometer. The solid lineis
with the active servo on (120 Hz peak is 67 nm/Hz-Y/2). In both cases
the rms motion is 60 nm. Note the dramatic reduction in the low

frequency noise with the servo on (afactor of 10 at 1 HZ).

We have controlled the effect of inertial noise by reducing its
sources, and by vibration isolation. We remove the noise caused by
the high vacuum pumps that must be attached to the machine by
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turning off some of the worst offenders during data taking.
Specifically, we turn off the water flow in the cooling baffle of the
diffusion pump on the main chamber which is a major source of
high-frequency (100 Hz) noise. It is possible to turn this water off for
about 5 min without a significant pressure rise. The effect of
mechanical main roughing pumps was limited by moving them ~4 m
from the machine, at the end of flexible forelines. The remaining
rough pump (on the detector chamber) is also shut down during data
taking.

Vibration isolation systems are low-pass filters for inertial noise.
Passive systems can be modeled as a mass attached to the noisy
system by damped springs. Active systems sense absolute position
and apply this signal through a feedback network to a position
transducer??’. In either case the noise is random motion specified by
a generalized power spectrum (usually in position or acceleration).
The response of the isolated mass can be predicted from the transfer
function of the isolation system.

Figure 3.5 shows schematics of idealized passive and active
systems. Typical passive systems for large masses (>100 kg) have a Q
of 1.5-3 and a resonant frequency of 2-10 Hz. For small masses
passive systems can easily be combined to get higher order inertial
noise filters: lead and rubber stacks are commonly used28. A common
difficulty with these passive systems is the nonlinearity (increasing k
at low w) of rubber springs for small displacements. The chief
difficulty with passive systems is their performance near DC.

27 More generally an active vibration isolation system may sense some
other quantity such as acceleration, or relative position (our case), and may
apply the feedback to a force transducer.

28 | have constructed such systems to test for the noise floor of our
accelerometer.
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Figure 3.5. Schematics of vibration isolation systems: a) asmple
passive system, b) an idealized active system, ¢) asimple (realistic)
active system and its network diagram. In all cases the floor is modeled
as ainfinitely-massive source of position noise with amplitude spectrum

Xn(W).

For the ideal active system of fig 3.5-b the noise to position
transfer function is given by g(w)/(1+g(w)) where g(w) is the transfer
function for the feedback network. In reality active systems are
always coupled to passive resonances that set a limit to their
performance. Figure 3.5-c shows the schematic and network diagram
for a more realistic active system. In this system the resulting
motion Xgyt Is calculated from the position noise xpn, the reference
position Xref, and the passive and active-system gains:

— GO rert GpXn
XOUl_i
1+g0 (3.5

At DC with x=0 the noise-output transfer function is given by
Xou— G
Xn 1+Q.0 (3.6)
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The passive-system limits the performance of the active system by limiting the
amount of gain that may be used in gy before the combined system oscillates. The
limit is simply the stability condition that the phase of gp(w)g4{w) not be -p when

the amplitude is greater than unity.

We use an active system to remove the relative position noise
from the translation stages. It uses the position sensed by the optical
interferometer to apply feedback to a PZT on the x axis of the middle
grating stage. This system is very similar to the "realistic” active
system described above in the last paragraph. The key difference is
that the position sensor in the real system is nonlinear—position is
given as a function of optical fringe intensity in Eq. 3.12, it is only
linear in position near the middle of a fringe. Figure 3.6 shows a
simplified schematic of the feedback network. The gain of this
system is limited in the manner described above by coupling to a
resonance at about 130 Hz. Figure 3.4 shows the actual performance
of the system as measured by the reduction in noise.

standby/lock 12k
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signal in ‘ ‘
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] lock/standby T to PZT amp
» S
referencein
output offset
\V4 for PZT

Figure 3.6 Schematic of the optical interferometer feedback
circuit. The 3 dB point of the integrator is at afrequency of 0.04 Hz.
We usually operate the circuit with a DC gain of afew hundred.

We have experimented with a number of passive isolation
systems, two of which are permanently (ha'!) incorporated into the
machine. The turbo pump on the detector chamber makes a lot of
noise at 1 kHz, about 50 nm on the accelerometer and 120 nm in
relative grating motion measured with the optical interferometer. We
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isolated this pump by hanging it on vacuum bellows which acts as a
spring to support the weight of the pump with a resonant frequency
of ~1 Hz. The bellows system reduced the acceleration noise by a
factor of ~200, enough to make the relative motion noise
undetectable. Another serious noise source was the two large
mechanical rough pumps. We removed most of this noise by making
“u”-shaped vacuum fore-lines with very low spring constants which
act as two pole filters for noise coming from the wall mounted
vacuum manifold.

The whole experimental apparatus may be isolated from floor
noise by a passive system consisting of separate resilient feet. We
have devised two such systems, one with ~10 cm-high pneumatic
feet, and the other consisting simply of rubber pads. The pneumatic
system has a resonant frequency of a few Hz for transverse (X) axis
motion of the machine, and it successfully reduces the RMS
acceleration by an order of magnitude (see figure 3.7). However such
systems have an undesirable side effect; they translate transverse
floor noise into rotational motion due to the nonsymmetric mass
distribution of the machine. For this reason we have so far operated
our interferometer without the floor noise isolation system. More
work is necessary to determine the best compromise between
transverse isolation and the generation of rotational noise.

3.B.ii.2  aignment

The fringe contrast of an interferometer depends on the
alignment of it’s beam splitters. In the three grating geometry that
we use, there are four relevant kinds of alignment requirements.

1. Equality of the spacing of the three gratings along the (z) axis of the
beam.

2. Alignment of the grating lines with the height axis of the beam, i.e.
with the collimation dlits.

3. Rotation of the gratings about the grating lines, they axis. The
gratings should be in a plane normal to z in order to prevent

foreshortening of the grating periods.
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4. Alignment of the gratings with respect to rotations about z (the beam
axis). They must be precisely aligned with respect to each other, and
roughly aligned to the slits (condition 2).

In addition, because of the limited height (along the grating lines) and width of
the gratings we used, there are two requirements on the positions of the gratings:

5. Alignment with respect to translations along x.

6. Alignment w.r.t. trandationsalong y.

It is difficult to calculate the effect on fringe contrast of unequal
grating spacing (requirement 1). This problem was one of the
motivations for attempting the numerical simulation of the
experiment described in chapter 2, and it is the only method | know
of for calculating the contrast as a function of grating spacing. The
grating spacing is fixed by the positions of the flanges and the design
of the translation stage assemblies. It is 0.663+0.003 m, with a
relative spacing error of 0.7%. The calculated contrast loss for this
spacing error is 3% (see fig 2.4).

The interference pattern formed by the first two gratings makes
a moire pattern after transmission through the third grating. The
period and direction of this moire pattern is a function of grating
alignment errors of type 3 and 4, and of the differences in the
grating periods. In our case the grating period and y axis (type 3)
errors are insignificant. The contrast measured by the detector
decreases with the number of periods of the moire pattern that it
samples. The wave vector of the moire pattern, Dk is the difference
between the Kfringe Of the fringe pattern formed by the first two

gratings and the wave vector of the last grating (fig 3.x).
kfringe:k1‘2k2 P Dk:kfringe'k3:2k2'kl‘k3 (3.8)

Note the similarity of thisformulato that of Eq. 3.3; both are based on similar
symmetry arguments. The contrast reduction factor is calculated by finding the

average of this moire pattern over the area of the detector.

29 Note that this condition ignores the degree of overlap of the
interfering spots. For our atom interferometer this requirement is trivial, but
it is significant for the optical interferometer. Equation 3.9 is sufficient when
the angle of diffraction is much less than the angular size of the beams, that is
when h/21 >> p/l gp. This means that we can align the atom interferometer by

turning only one grating, but we must adjust two for the optical case.
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A good approximation is to require that Dk-w and Dk-h be less that p/2, wherew
and h are the width and height of the detector. For the 0.2 mm-period gratings
andalmm” 25 mm-detector ("standard configuration™) this requirement means
that the gratings must be aligned about the z axis (requirement 4) to better than
10-3 radians. Thisis our most difficult alignment problem; its solution is detailed
below.
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Figure 3.x: @) shows how the wave vector (Dk) of the moire
pattern sampled by the detector is derived from the k’ s for the three
gratings. b) shows how restrictions on Dk are imposed by the height
and width of the detector.

The effect of rotations about the grating lines (requirement 3)
can be calculated by considering it as a change in the effective
grating period. In the momentum-space picture given above this is
equivalent to taking |keff|=k- x for each grating. Luckily this effect is
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second order in the angular misalignment because Keff=k cos(qy). For
the standard configuration all that is required is alignment to less
than 3~ 10-2 radians. This precision is easily achieved by the original
machining tolerances so that no alignment is needed during normal
operation.

The vertical positions of the gratings must be collinear with the
detector, vertical-slit, and beam skimmer. These adjustments are
performed with a telescope when the oven is removed. With a light
behind the detector the various elements are adjusted in turn by
aligning them with the telescope cross-hairs. The estimated errors
are ~100 mm, which is sufficient because the shortest grating (the
middle one) is 500 nm-high. The skimmer is positioned last, and then
the nozzle is aligned to it by maximizing the hissing sound heard
when the argon jet strikes the skimmer (with the apparatus open to
the air). During this process the horizontal positions (X axis) are
roughly aligned, but they can only be accurately aligned with the
atom beam during operation.

In addition to horizontal and vertical alignment, the telescope is
also used to align the gratings with the slits, and to roughly align the
slits with the detector. The first slit alignment is not critical because
the beam is only 300 mm-high at its position, thus the angular
tolerance is ~0.1 rad (20 nm-width over 300 nm). The second slit
must be parallel to the detector wire to ~0.02 rad in order for the
detected beam width to be a minimum. This alignment is done with
the beam operating by repeatedly scanning the detector to measure
the FWMH of the beam, which is then minimized by rotating the
second slit under computer control. The gratings are aligned parallel
to the second slit (requirement 2) by eye through the telescope. Our
estimated error is £0.05 rad.

The alignment of the grating lines to each other (requirement 4)
is done using optical diffraction from the 4 mm-period support
structure gratings39. This is possible because the fabrication method

30 The experiment was originally planed with different alignment
method (Anderson, 1988). | will describe it here because it has advantages that
may make it preferable in the future (and because a great deal of time was
spent developing it). The method is based on using the fine period gratings as
optical polarizers. A beam polarized at ~45° to the grating axis is passed
through a photoelastic modulator (PEM) with strain field perpendicular to the
grating lines. The beam then passes through the grating and is detected. A
lock-in amplifier is used to monitor the signal at twice the frequency with
which the PEM is modulated (50 kHz in our case). For small angles the
resulting signal is linearly proportional to the angle between the PEM and the

grating. The precision of this method is very high, we routinely get 10-° rad.
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ensures that the support structure grid is perpendicular to the fine
grating to the precision with which either is defined (see chapter
2.x). In the first step of the alignment procedure the three gratings
are arranged collinearly along a HeNe laser (I =0.63 nm) beam. Next
the gratings are aligned normal to the laser beam using their back
reflections, this can easily be done to better than 10-3 rad. A
tensioned wire is used to define a line parallel to the laser beam but
displaced from it by ~1 m, which is most simply accomplished with
plumb lines hanging from the wire which is above the laser beam.
Finally, the gratings are rotated so as to bring the high-order
diffracted-spots from the support structure on to the wire. The
precision with which this can be done is limited by the width of the
gratings: they are only 40 (120) mm-wide31 so the diffracted orders
have a single slit pattern along x which is 16 (5) mrad wide. The
accuracy is limited by the straightness of the wire, and by subtle
diffraction effect which result in non-coplanar diffracted orders.
Because of the dimness of the high-order diffracted-spots (we used
5th or 6th order) it is necessary that most of this operation be
performed in near-total darkness (Plant 1973).

The alignment is performed with the flanges which hold the
gratings flipped over (rotated 180° about z) and resting on their
respective flange mounts32 (“o0”-rings removed). Because the gratings
are rotated exactly 180° they maintain their relative alignment
when they are flipped again to replace them inside the vacuum
envelope. This is true independent of the orientation of the flange
mounts, depending only on the top and bottom of the flange being
coplanar. Our flanges are flat to 10-3 rad.

Using this method we are able to align the grating lines to £1
mrad. The method has the advantage that it not only aligns the
gratings to each other, but also aligns them to the vertical if the
plumb lines are used. This is important because, due to the
gravitational phase shift being proportional to v2, the fringe contrast
falls off steeply with tilt angle (see figure 4.x).

However, there are serious accuracy problems. We found angular offsets as
high as 102 rad.

31 we used two sizes of gratings (see chapter 1.x), the short wide one in
the middle and the tall narrow ones at each end.

32 It can not be too strongly recommended that this flipping task not be
delegated to individuals prone to dyslexic fits.
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Figure 3.8: Contrast loss as a function of z axis misalignment of
the gratings. The effective misalignment angle q is given by gg1+0gs-
20g, h it the detector height and p is the grating period.

Final alignment of the gratings is done by maximizing the fringe
contrast with the interferometer operating. The expected fringe
contrast as a function of this alignment is shown in figure 3.8. The
strategy for searching for interference (non-zero fringe contrast)
must be carefully considered. It may be useful to reduce the
effective height of the gratings using the vertical height slit. This has
the effect of reducing the interference signal while increasing
tolerance for grating misalignment. The signal to noise ratio is
reduced with decreased slit height because of the reduction in total
signal (gaussian statistics b s/npVn) and because the hot-wire
background remains the same. Because the contrast is so much
higher when the misalignment angle is less 0.5 h/p, the reduction in
signal to noise may be worthwhile.

3.B.iii Data

3.B.iii.1 Datacollection

Data are collected with the object of determining if there is an
interference signal, and if one is found, of measuring its phase. The
method is to vary the interferometer phase while recording the atom
count rate, and then to examine the record for a correlation between
phase and rate.
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In the analysis that follows | will assume that the interferometer
signal S is determined by the controlled phase ¢c according to:

S=1(1+C sin(gctpnthy (@) (3.10)
Where | isthe total beam intensity transmitted through the three gratings, and C is
the fringe contrast. Where ¢ is a known incremental phase applied by the
experimenter for the purpose of measuring the other phases. If one wishesto
measure the phase shift due to some applied potential, then ¢y is a phase shift and
the potential is assumed to be controlled through a parameter a. In an experiment
of this type one wants to measure the function ¢(a), e.g. if one desires to measure
the effect of electric fields, a would be the voltage applied to the field plates. The
phase due to all factors that are not deliberately controlled is ¢, i.e. thisistherug
under which all but a and the intended value of ¢ are swept. The measured
count rate Risequal to S convolved with the detector time response p(t), and

added to the hot-wire background B:

R(t)=B(t)+ ] p(t)Yt+t) dr
¥ (3.12)

I and B Are easily measured by using the beam blocking shutter
to modulate |; typical values are B=50 Hz and 1=100 Hz. p(t) can be
determined by modulating the shutter and recording the time
response when | is made large by removing the gratings, typical 20-
80% response rise times are 5 to 50 msec.

In general it is advantageous to modulate ¢c in order to average
out noise in | and B, and so reduce the error in the determination of
C and ¢n+py. We modulate ¢c by changing the relative positions of the
three gratings. This is accomplished by modulating the reference
voltage that is input to the lock loop; typically we use a triangle wave
of amplitude ~1/3 of an optical fringe (-1 nm) at ~0.3 Hz. While we
modulate the reference input we record R(t) and the value of ¢¢(t)
measured by the optical interference signal.

The amplitude of the ¢ modulation is calibrated by the optical
interferometer which in turn is calibrated by measuring the intensity
limits of its interference signal. We turn off the lock loop and drive
the optical interferometer through several fringes while the
computer records the intensity with an Analog to Digital Convertor
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(ADC). From a density histogram we derive the intensity limits in
ADC counts. The phase ¢ is then calculated from the measured
intensity and the ratio of optical- to atom-grating period by

oty = P aswax))

Patom %(Vmax +Vmin)

(3.12)
where v is the measured optical intensity. This procedure removes gain calibration
as a source of error by comparing measured ADC counts, although ADC linearity
may still be a problem. Thus, the measured ¢(t) departs from the “intended” ¢c

due only to these calibration questions.
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Figure 3.9: Ten seconds of raw data. The upper graph shows the
relative transverse position of the interferometer gratings as measured
by the optical interferometer. The lower graph shows the number of
atoms per 10 msec bin. Peak heights of the off-scale hot wire noise

bursts are 92 and 304 counts respectively.

The 0.3 Hz ¢c-modulation is very effective at removing the noise
in | because measured beam intensity changes on 10's of minute
time scales. However, the ¢c-modulation frequency is to low to
remove much of the high-frequency burst noise in B. It is impossible
to significantly increase the frequency because of the time response
of the detector. The worst of the hot-wire noise is removed in the
computer by an algorithm that detects and removes the bursts. The
beginning of a burst is easily recognized because they typically have
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rise times of ~10 msec and peaks of 100 R, the algorithm removes all
data from the start of the burst until the signal falls below R - 2V/R.

We usually take data for 200 sec in 10 msec bins. During data
collection we shut off the worst sources of vibration noise: the water
flow through the cooling manifold of the main chamber diffusion
pump, and the mechanical pump on the detector chamber. Shutting
off these pumps currently limits our data taking intervals to about 7
minutes, but this problem could be easily solved.

3.B.iii.2 Dataanadysis: random errors

After taking a data set (200 sec is about 150 K Bytes) the data
are transferred from the experiment control PC-AT to a faster
computer (Mac lici) for analysis. The data analysis program first
determines the optical fringe limits by computing a histogram of a
calibration data-set and allowing the user to indicate the fringe
limits. The phase ¢ is then calculated for each data point using EqQ.
3.x. Noise bursts are removed from the R(t) record by the algorithm
described above, with no reference is made to ¢c. A density
histogram of ¢ is calculated from which we choose a section of the
data that is an integral (m) number of grating periods wide (2pm in
¢c). Ideally the modulation amplitude is adjusted so that the ¢. data
spans an integral number of periods and no data are lost. However,
because of the residual noise in the lock-loop and the consequent
noise in the measured ¢¢(t), the data density departs substantially
from the square profile that would result from pure triangle wave
modulation. Typically this noise results in about one third of the data
being discarded.

The selected R datum then sorted and binned according to its
corresponding ¢c value.

bin,= a R(fJ
2 2
PRalaals (3.13)
WherenT {0, 1, ..., 4m-1}, that is four bins per period for an integral (m) number
of periods. Each bin isthen normalized by dividing it by the number of data
points summed in that bin. Finally the signal amplitudes in the sine and cosine
phases are calculated by multiplying the bin, data by square waves of period 4

(in'n). The amplitude in the sine phase Asis given by
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4m-1
As=P- 4 bingx(floo(n4))
8m o (3.14)

where x is 1 for even integers and -1 for odd. Similarly, Ac is
calculated by replacing n/4 with (n+1)/4. The amplitude is

A= A§+A§, and so the measured contrast is A/1, where | is the mean
intensity. The measured phase is calculated from the amplitudes by

As
ntéy=atar—
boto ar(Ac) (3.15)

Assuming that the data are evenly distributed over the bins and that the statistics

in each bin are gaussian, the error in the phaseis
1

In(AZ+Ad (3.16)

Where n is the mean number of points per bin.




63

320

300

280

Atoms counted in one second

260

| | | |
-400 -200 0 200 400
Position in nm

Figure 3.10. Interference signal from 400 seconds of data.
Background hot wire noise of 40 Hz subtracted. Error bars are one
standard deviation assuming Poissonian noise, and slightly underes-
timate the noise because of the super-Poissonian character of the hot

wire background.

It is difficult to choose the optimal method for analyzing the
R(¢c) data because it is not equally spaced in ¢c.. Standard Fourier
transform techniques are inapplicable to unequally spaced data,;
instead one must resort to generalized periodigram methods or
divide the data into equally spaced bins. Neither solution is very
satisfactory because of the difficulty of assessing the expected noise
power at each frequency. Because we already know the period to
better accuracy than we can easily expect to measure it, our data
analysis method is able to avoid these pitfalls. The method we use
(square wave power in an integral number of periods) escapes from
the difficulties by using the minimum number of bins. It has two
disadvantages: the data wasted to keep the number of periods
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integral and the loss of signal to noise ratio incurred by using a
square wave.

3.B.ili.3  Systematic errors

We have no way of determining the absolute phase in the
interferometer, so systematic errors in our phase measurements are
caused by drifts in the noise phase ¢,. Assume that one wishes to
measure the phase shift ¢y(a) as a function of some applied potential
parameterized by a. The method would be to set a and vary ¢¢ in
order to measure ¢y+pn. Repeating this sequence for many values of
a allows the determination of the combined phase as a function of a:
(dovtdn)(@). Assuming that ¢ is independent of a this in principal
allows the determination of ¢y (a) with no error. In practice time
limitations make is very hard to average out low frequency drifts in
on, SO they become the limit on the accuracy with which ¢y (a) can be
measured. | now turn to a discussion of the causes of drift in ¢n,.

The PZT which is mounted of the middle grating for fine rotation
adjustment also translates it relative to the optical grating. PZTs
suffer from "creep”, a long time constant asymptotic approach to
there equilibrium position after the control voltage is changed. This
is the most easily controlled of the causes of ¢, drift, a wait of 1 hr
will essentially remove it. However it causes significant difficulties in
adjusting the grating angles for maximum contrast.

The optical interferometer removes all of the large 1-10 nrm hr-1
thermal drifts in the positions of the translation stages. However,
temperature changes acting over the short (-5 cm) lengths separating
the optical from the atom gratings could still cause significant drifts.
For 0.4 nm-period gratings the drift is ~100 rad °C-1 if you assume
that the stages expand independently.

If the optical and atom interferometers are not coplanar then
vertical y axis drifts in the translation stage positions will cause drift
in ¢n. For small angles q between the planes, the relative position
drift will be the product of q and the vertical drift. We estimate
vertical drifts of 1-10 nm hr-1 from calculation of the thermal drifts
and measurements of the x axis drift. Therefor, to achieve 0.1 rad
hr-1 phase stability for 0.4 mm-period gratings g must be less than
10-2 rad. At present we have only aligned g to 0.1 rad, but 10-3 rad
should be achievable with plumb line techniques.
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Drifts in the calibration of the optical interferometer, that is in
the fringe intensity limits, cause drifts in the effective ¢c. These
drifts can be caused by bending of the laser beam optics relive to the
optical gratings. We remove much of the effect of this drift by
recalibrating the fringe limits for each data set we take. The residual
drift could probably be reduced further by using a differential
detection scheme instead of the current single detector, or by an
improving the laser mounting scheme.
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4 An application: the COW experiment

In this Chapter | briefly discuss the possibility of using our
interferometer for a repetition of the COW equivalence principal
experiment. | include this discussion both because we are actually in
the process of doing the experiment, and because it is a good
example of the applications of atom interferometers discused in 3.A
and of the data analysis covered in section 3.B.iii.

The COW experiment takes its name from the authors of the
original paper—Colella, Overhauser, and Werner (1975). The
experiment is a test of the Einstein equivalence principal in a
qguantum system, it is simply the use of a matter wave
interferometer to measure the local gravitational acceleration, little g.
The experiment may be regarded as interesting because it is the only
system in which we can directly test the use of the mgh form of the
gravitational potential in the Schrodinger equation.

The experiment consists of measuring the phase shift in the
interferometer as a function of the tipping angle (between vertical
and a normal to the interferometer’s enclosed area). One then
compares the measured acceleration calculated from the phase shift
by Eq. 3.1 with the known value of g. In the language of Chapter
3.B.iii the tilt angle is a and the phase f is given by 3.1 where a=g

sin(a), that is we are testing whether
2 .
v = %99 naj

(4.2)
where d isthe grating period and t isthe atom’stransit time (L/v). In our

interferometer with 4 mm-period gratings thisgivesf, = 69 a for smdl a.

The quadratic dependence of the phase shift on the atom’s
velocity means that the contrast decreases quickly with increasing a.
In addition, the phase f\/(a) that is measured by varying f differs
from the f, that would be measured if the velocity width was zero.
This difference results from the integration of Eq. 4.1 over the
velocity distribution. Figure 4.1 shows the contrast loss and the
phase error calculated for a 10% velocity width.
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It seems interesting33 and feasible to measure g to a few parts in
a thousand by this method. | expect this experiment to be limited by
the following sources of error.

33 Recent experimental tests with neutrons Werner (1988) show 0.8%
(eight sigma) deviations from mgh. However, S. Chu (personal comunicaticr
with D. Pritchard) has recently done the experiment with atoms and found

deviation at the 10-5 level.
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1. Motion of the optical gratings with respect to the atom gratings. If this
relative motion is caused the by bending of the apparatus asit istilted
It represents a systematic error. The active position stabilization
system should remove this, but only if the optical and atom
interferometers are in the same plane.

2. Limitations in our knowledge of the of the mean velocity and velocity
distribution. This can be measured either by diffraction from a grating
of known period (difficult to get the distribution), or by laser

florescence methods.
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5 Conclusions

Is it reasonable to call the work described in this thesis science?
This is a return to the issue raised in the introduction: are these
experiments tests of theory or are they technologically novel
demonstrations of well known facts. Unfortunately the reader is
justified in assuming that no definitive answer will be given to this
question.

The argument that the work is not science rests simply on the
observation that no one is interested in the results as such. The
considerable interest that these experiments have generated is due
to their technological novelty, and to the simplicity with which they
illustrate basic theory. Moreover, we do not think of ourselves as
testing the theory. Had our atoms failed to show interference we
would never have doubted the basic quantum mechanics, but rather
would have used it to analyze what we were doing wrong.

It is argued that any confrontation of theory with fact
constitutes science34. However, this argument is very unsatisfying.
Historical study has clearly demonstrated that science does not
proceed by blind testing of theory. For example, dropping stones to
test Newton's theory cannot reasonably be called science. It is also
argued that our work is science because it may make tests of
interesting questions technologically possible (e.g. the Lense Thirring
frame drag). This argument fails to make a distinction between
science and technology, but perhaps this is unavoidable.

From a sociological standpoint the work is clearly science,
because the community of people recognized as scientists are
interested in it, and accept it as an appropriate endeavor. In the
language of Lakatos (see below) it is part of an active research
program.

Of course this discussion begs a definition of science, and
unsurprisingly, | don’t have a definitive one. For me, the scientific
endeavor is the process of learning how to predict nature. That is,
neither prediction or understanding alone are sufficient. This
definition is motivated by the discussion in Lakatos (1970) from
which | took the quote that opened this thesis. | think Lakatos is
correct in rejecting Poppers' model in which science proceeds by the
falsification of theoretical hypotheses; and in emphasizing the
process, the dynamics of scientific research programs. In my words,
the process of learning.

34 This claim was recently made to me in a discussion of these issues with
a number of respected profesionals in this field.
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A1) Diffraction of Atoms by a Transmission Grating
Diffraction of Atoms by a Transmission Grating

D. W. Keith, M. L. Schattenburg, Henry I. Smith, and D. E.
Pritchard
Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

Abstract

We have demonstrated a novel diffraction grating for atoms. A
collimated beam of sodium atoms with a de Broglie wavelength of 17
picometers was diffracted by transmission through an array of slits
with a spatial period of 0.2 mm formed in a gold membrane. This is
the first reported diffraction of atoms by a fabricated periodic
structure. Our transmission diffraction grating for atoms can divide
or recombine an atomic beam coherently, and may provide the
easiest route to the realization of an atom wave interferometer.
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We report the first observation of the diffraction of atoms from a
fabricated diffraction grating. More specifically, we observed
diffraction of a highly collimated beam of atomic Na from a
transmission grating of narrow slits in a gold foil. We note that the
diffraction of atoms by an edge has been previously observed3s, as
well as the diffraction of atoms reflected from the periodic potential
of a crystal surface3é, and the diffraction of atoms by a standing
wave of light37. Our observation seems significant because these
transmission diffraction gratings, when used as beam splitters and
combiners, may be the best technology for the construction of an
atom interferometer. We discuss this application at the end of this
paper.

Our diffraction gratings, which were developed for soft x-ray
spectroscopy, consist of a 0.5 nm thick, 9~ 4 mm array of gold bars
each about 0.1 nm wide with 0.1 mm slits in between. The grating
fabrication process is described in detail elsewhere38. The grating
periodicity is established by exposing a photoresist film to a UV
optical interference pattern (so-called holographic lithography).
Subsequent processing yields a mask suitable for x-ray lithography
which is used to form a relief grating in a 0.5 nm thick polymethyl
methacrylate (PMMA) film. The substrate for the PMMA is a Si wafer
coated with ~ 5 nm of chromium and ~10 nm of gold (the "plating
base’). Gold is electroplated to fill the slots in the relief grating, and
then the PMMA is removed leaving the gold bars on the thin plating
base supported by the silicon wafer. Because such a structure would
be too weak to stand on its own, a 4 mm-period grating, formed by
gold electroplating, is superimposed orthogonally onto the 0.2 mm-
period grating, and a 150 mm-period grating is superimposed
orthogonal to the 4 mm-period grating to form a support grid. Finally,
the silicon is dissolved and the plating base is removed by ion beam
bombardment leaving a free standing grating. Figure 1 shows

35 J.A. Leavitt and F.A. Bills, Am. J. Phys. 37, 905 (1969).

36 |. Estermann and O. Stern, Z. Physik 61, 95 (1930).

37 P, E. Moskowitz, P.L. Gould, S. R. Atlas, and D.E. Pritchard, Phys. Rev.
Lett. 51, 370 (1983); P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard,
Phys. Rev. Lett. 60, 515 (1988).

38A, M. Hawryluk, N. M. Ceglio, R. H. Price, J. Melngailis, and H. I. Smith, J.
Vac. Sci. Technol. 19(4), 897 (1981); N.M. Ceglio, A.M. Hawryluk, and R.H. Price.,
Proc. S.P.l1.E. 316 (High Resolution Soft X-ray Optics), 134 (1981); E. H.
Anderson, C. M. Horwitz, and H. I.Smith, Appl. Phys. Lett. 49, 874 (1983); H. I.
Smith, E. H. Anderson, A. M. Hawryluk, and M. L. Schattenburg, in X-Ray
Microscopy, (Springer Series in Optical Sciences, vol 43), eds. D. Rudolph and G.
Schmahl, (Springer-Verlag), Berlin, Heidelberg, 1984.
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scanning electron microscope (SEM) micrographs of a completed
grating.

The atomic beam system, described elsewhere3, is a supersonic
nozzle beam of sodium in argon carrier gas. Adiabatic expansion of
the gas after it leaves the nozzle results in a fairly monochromatic
beam; Dv/v = 12% with v = 103 m/s. The sodium has the same
velocity as the carrier gas giving it a de Broglie wavelength (I gp) of
17 pm. The beam is collimated by two 10 nm slits spaced 1 m apart
to form a2 mm~ 10 mm ribbon-shaped beam with a divergence of
10 nrad. Individual atoms are detected after surface ionization on a
25 mm-diameter hot wire (Pt/W alloy) located 1.5 m downstream
from the second slit. The detector can be moved perpendicularly to
the beam in 10 mm (7 nrad in angle) steps to measure the profile of
the beam. The resulting angular resolution is ~25 nrad as can be seen
in Figure 2a.

Figure 2b shows the profile of the atomic beam diffracted by the
grating which is placed ~1 cm on the detector side of the second
collimating slit. The positions of the diffracted orders are given by
the usual grating equation for small angles, gn=nl gp/d where d is
the grating period, which gives q+=85 nrad for our standard case. The
second order peaks are suppressed because the slit width is half the
grating period. The higher orders are lost in the noise (e.g., the
intensity of the n = \(+-3 orders should be only 4.5% of n = 0).

In order to increase the separation of the diffracted beams it is
possible to lower the velocity of the sodium, and hence increase its
de Broglie wavelength, by using a heavier carrier gas. This is because
the gas velocity after expansion is inversely proportional to the
square root of the mass. It is helpful to use a noble gas in order to
suppress the formation of molecules and clusters; we chose xenon.
Figure 2c shows the diffraction of the slow beam by the grating. The
separation of the first order peaks is 240 nrad, which is 1.5 times the
separation for argon carrier gas. This indicates that we did not realize
the full slowing predicted by the mass ratio, VMx/Mar=1.8. We
presume that this is due to residual argon in the reservoir or to
velocity slip of the two components.

The strong intermediate peaks visible in Figure 2c must be
caused by a grating aberration with a period twice the fundamental.
The deformation responsible is clearly evident in Figure 3. This
aberration is only present in isolated regions of the grating; it is
caused by uneven tension in the grating membrane. Figure 2d shows
the beam seeded with argon diffracted by a region of the grating
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with the same aberration. The variation in total signal strength
between the data sets is due to long time scale fluctuations in the
raw beam intensity.

The diffraction gratings demonstrated here offer significant
advantages over existing beam splitters which might be used to
construct an atom interferometer. We first present some reasons for
our interest in an atom interferometer, followed by a discussion of
the relative merits of beam splitters which could be used to build
one.

Interferometers measure the difference in phase accumulated
by a particle while travelling between two points over different
paths. The phase of the qguantum mechanical amplitude for a particle
to go between two points over a given path is proportional to the
classical action for that path. Thus, an interferometer is sensitive to
anything that affects the classical action, either changes in relative
path length or any interaction (e.g., electromagnetic or gravitational)
which changes the energy of the particles. To date matter wave
interferometers have been realized for neutrons3® and electrons4°.

An atom interferometer would allow a number of new
experiments in atomic physics such as a measurement of the Casimir
atom-wall potential, the phase shift on rotation of bosons, and
various manifestations of Berry's phase (e.g., of atoms in spatially
varying magnetic fields). Atom interferometers could lead to large
improvements in the resolution of certain null searches such as the
electron-proton charge difference.

For applications involving measurement of absolute rotation
(Sagnac effect), relative translation, or gravitation, atoms appear to
be better for matter wave interferometers than either electrons or
neutrons. The neutrality of atoms means that they are far less
sensitive to stray fields than electrons, allowing the operation of
much larger area interferometers. Atoms are more useful than
neutrons because they are available (at thermal energies) with 1 to
100 times shorter wavelengths, and are produced by cheap compact
sources. More importantly, the detected spectral brightness (particles
str-1 time-1 area-1 v/Dv) of available atomic beam sources is from

104 (our source) to 106 times brighter than the best neutron

39H. Maier-Leibnitz und T. Springer, Z. f. Phys. 167, 368 (1962); The first
'‘perfect crystal’ neutron interferometer reported was: H. Rauch, W. Treimer,
and U. Bonse, Phy. Lett. 47A, 369 (1974).

40L. Marton, J. Arol Simson, and J. A. Suddeth, Rev. Sci. Inst. 25, 1099
(1954).
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sources*1. High fluxes should enable an atomic interferometer to
make use of the fringe splitting techniques developed for optical
interferometers (e.g., servo to the steepest point on a fringe and
measure the error signal). Because the magnitude of the Sagnac
effect scales with the rest energy (the energy for a photon) of the
particles, the intrinsic sensitivity of atom interferometers to rotations
is 1010 times greater than that of a geometrically similar laser gyro.
It is possible that such a gyro could eventually be used to detect the
dragging of inertial frames (Lense Thirring effect) predicted by
General Relativity42.

The key component necessary for an atom interferometer is a
coherent beam splitter. Due to the large potential energy of atoms in
solids the tunnelling depth of a free atom with thermal energy is less
than atomic dimensions; thus, beam splitters based on partial
transmission appear impossible. We envisage four types of beam
splitters for atoms, all are based on diffraction by periodic media.
Two involve reflection: diffraction from the atomic planes of a crystal
surface and grazing incidence diffraction from a fabricated surface.
The other two are diffraction by transmission through a fabricated
structure or through a standing wave of light. All of these methods,
except diffraction by a grazing incidence reflection from a fabricated
surface, have now been demonstrated.

In addition to a beam splitter, one must be able to achieve
sufficient mechanical rigidity, flatness, and alignment of the separate
components of an interferometer to observe fringes. The required
resistance to relative vibration scales with the de Broglie wavelength
and the angle of incidence (the grazing angle qgr is the complement
of the conventional angle of incidence). Specifically, for beam
splitters involving a reflection the surface must be flat (over the area
of the beam) and mechanically stable (during the detector response
time) relative to other surfaces to order qgrl gp For transmission
gratings one requires stability to order qgrd (the 'effective’ grating
period), a less restrictive condition. For some, 'space-invariant’
transmission grating interferometers the requirements are even
weaker43. To build a successful interferometer one wants diffracted
angles large enough for a useful separation of the beams, but not so
large that the required alignment and stability are too difficult to

41 C. G. Shull, personal communication. The best thermal neutron sources
have a brightness of ~1014 str-1 sec-1 cm-2

42 |, E. Stodolsky, Gen. Rel. and Gravitation. 11, 391 (1979).

43 B. J. Chang, R. Alferness, and E. N. Leith, Appl. Optics 14, 1592 (1975).
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achieve. With this condition in mind we will now discuss the merits
of existing beam splitters.

Although it was not recognized as such, the first atomic beam
splitter was demonstrated in 19292; it was the diffraction of atoms
from the surface of ionic crystals. Because the interatomic spacing in
a crystal surface is of the same order as the de Broglie wavelength of
typical atomic beams, the angular separation of the diffracted beams
is of order unity (i.e., ~1rad). Constructing an interferometer from
these crystal surface beam splitters would be exceptionally
challenging because it requires relative flatness and rigidity of
separate surfaces to less than atomic dimensions.

In 1983 our group demonstrated the Kapitza-Dirac effect in
which atoms are diffracted from a standing wave of near resonant
light3. The grating period in the standing wave is 1/2 the optical
wavelength, thus the angular separation of the diffracted orders is
I do/! 1ight which is ~60 nrad for a thermal sodium beam.
Interferometers based on this technique have been proposed44, but
the diffracted angles are frustratingly small. In addition, this method
is limited to atoms that have accessible laser transitions (frequently
requiring optical state preparation of the atoms), which are not the
atomic species most suitable for the production of intense atomic
beams (e.g. He).

The reflection4s, focusing4é, and diffraction of atoms have been
realized using their interaction with intense near-resonant laser
light. We believe that it will be fruitful to look for alternative atomic
optical elements based on the technology developed for x-ray optics.
It should be possible to adopt grazing incidence x-ray mirrors, lenses,
and diffraction gratings for use with atom beams. These techniques
would be based on the specular reflection of atoms from smooth
surfaces, which occurs when the surface roughness is much less than
the wavelength corresponding to the momentum of the atom
perpendicular to the surface. For example, efficient specular
reflection of reactive atoms with thermal velocity at angles qqgr of up
to 40 mrad has recently been reported by Haroche et al4’. A
disadvantage of these methods is that they are critically sensitive to

44 V.P. Chebotayev et al., J. Opt. Soc. Am. B 2 (11), 1791 (1985).

45 V. I. Balykin, V. S. Letokhov, et al., JETP Lett. 45, 353 (1987); V. I.
Balykin, V. S. Letokhov, et al., Phys. Rev. Lett. 60, 2137 (1988).

46 J E. Bjorkholm, R.R. Freeman, A. Ashkin, and D.B. Pearson, Phys. Rev.
Lett. 41, 1361 (1978); V.l. Balykin and V.S. Letokhov, Opt. Com. 64(2), 151
(1987).

47 A. Anderson, S. Haroche, E. A. Hinds, W. Jhe, D. Mexchede, and L. Moi,
Phys. Rev. A 34, 3513 (1986).
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contamination of the reflecting surface. Another class of x-ray optical
elements that could be adapted for use with atoms are based on
transmission through microfabricated structures. In addition to the
diffraction gratings described in this paper we believe that similar
methods could be used to produce zone-plates and eventually wave
guide arrays, for atoms.

In conclusion, the transmission diffraction grating reported here
has many advantages over a Kapitza-Dirac grating which has been
suggested as a beam splitter for an atom interferometer. It has 2/3
the period, will work with any atomic species, and requires neither a
frequency stabilized laser nor optical preparation of the atoms. In
the near future we hope to achieve diffracted angles more than an
order of magnitude larger than are demonstrated here. We expect to
do this by halfing the grating period and by using the gratings at
grazing incidence. The effective spatial period of the gold foil grating
can be varied by changing its orientation with respect to the beam.
We expect that it will be possible to reduce the thickness of the
gratings so that the ratio of slit depth to separation is 1/10 instead of
the current 5/1. This would allow the grating to be used at a grazing
angle of ~ 1/5 rad giving a five-fold increase in effective line density
and thus in the beam separation. Such a grating would be ideal for
the construction of the first atom interferometer.

This work was supported by the National Science Foundation
(PHY86-05893).

Figure Captions

Figure 1. SEM micrographs of the completed grating at two
different scales. Part A shows the 0.2 nm-period grating overlaid
with the 4 mm-period grating. Part B shows the 150" 4 mm support
grid on a larger scale.

Figure 2. Experimental profile of the Na beam. The y axes are the
number of detected atoms, the counting time at each point is ~1 sec.
The line through the points is only for visual effect. As explained in
the text, part A is the undiffracted beam, and parts B, C, and D show
the beam diffracted by transmission through the grating. In C the
carrier gas is Xe, in the other cases it is Ar.

Figure 3. SEM micrograph of a portion of the grating that was
damaged during mounting.
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Figures from “Diffraction of atoms by a transmission grating”
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A2) Atom Optics

ATOM OPTICS

David W. Keith and David E. Pritchard

Physics department and Research Laboratory of
Electronics

Massachusetts Institute of Technology
Cambridge, M.A. 02139

INTRODUCTION

By atom optics we mean the rich collection of emerging techniques by
which atoms may be manipulated in the manner of light in classical optics.
Existing atom optical elementsinclude mirrors, lenses, and diffractive optics
including beam splitters as well as dissipative elements such as slowers, ‘coolers,
and traps which have no analogue in classical optics. To date, these atom optical
elements have been realized as demonstrations of principal, we hope that we will
soon see some of them used astoolsin real experiments. We must caution the
reader that this paper isintended as aintroduction and enticement to atom optics,

not as an exhaustive survey. Most of the paper will be devoted to atom
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interferometers; first general comments on beam splitters and interferometer ge-
ometries, then a detailed ook at the one we are currently constructing, and finally
adiscussion of afew possible experiments with atom interferometers. The fina
section of the paper will describe an assortment of atom optical elements,
concluding with areturn to nearer term experimental realities — the need for the

rapid development of atom sources that are both slow and bright.
ATOM INTERFEROMETERS

Gratings

The key component necessary for the construction of an atom interferometer
Is a coherent beam splitter. Therefore we will first discuss the available atom beam
splitters with special regard to their suitability for constructing an atom
interferometer.

Due to the large potential energy of atoms in solids the tunnelling depth of a
free atom with thermal energy is less than atomic dimensions; thus, beam splitters
based on partial transmission appear impossible. We now list three general classes
of beam splitters for atoms.

1) Reflective diffraction gratings. Although it was not perceived as such, the
first atomic beam splitter was demonstrated in 19294, it was the diffraction of
atoms from the surface of ionic crystals. Because the interatomic spacing in a
crystal surfaceis of the same order as the de Broglie wavelength (I gg) of typical
atomic beams, the angular separation of the diffracted beamsis of order unity (i.e.
~1 rad). Atoms may be specularly reflected by surfaces when the de Broglie
wavelength corresponding to the momentum perpendicular to the surface is much

lager than the surface roughness. It should be possible to use this effect to diffract

48| Estermann and O. Stern, Z. Physik 61, 95 (1930).
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atoms by grazing incidence reflection from a high quality laminar grating. We are
currently trying to demonstrate this type of atom diffraction grating.

2) Transmission diffraction gratings. In 1983 our group demonstrated the
Kapitza-Dirac effect in which atoms are diffracted from a standing wave of near
resonant light. The grating period in the standing wave is 1/2 the optical
wavelength, thus the angular separation of the diffracted ordersis 21 g/l jignt
which is~60 prad for athermal sodium beam. In 1988 we demonstrated the
diffraction of atoms by transmission through afabricated periodic structures. The
transmission gratings are arrays of ditswith a spatial period of 0.2 umin a0.5 pm-
thick gold membrane.

3) Conventional beam splitters. If one could make a transmission grating
micro structure with a surface sufficiently smooth to reflect atoms incident at
some grazing angle while still transmitting atoms through the dlits then one would
have a near analog to the half silver beam splitter used in conventional optics.
Unless the grating period is sufficiently small, such adevice will still waste about
1/2 of the flux by scattering atoms into orders other than the desired Oth order

reflected and transmitted beams.

Interferometer Geometries

Interferometers have different geometries and properties depending on what
class of grating is used. Irrespective of the class of grating used, the poor velocity
width of existing atom beam sources (Dv/v ~ 1-10-3) force one to design awhite

fringe interferometer in which an achromatic central fringe is assured by using

49 p. E. Moskowitz, P.L. Gould, S. R. Atlas, and D.E. Pritchard, Phys. Rev.
Lett. 51, 370 (1983); P. J. Martin, B. G. Oldaker, A. H. Miklich, and D. E. Pritchard,
Phys. Rev. Lett. 60, 515 (1988).

50 D. W. Keith, M. L. Schattenburg, Henry |. Smith, and D. E. Pritchard,
Phys. Rev. Lett. 61, 1580 (1988).



86

equal path lengths on either side of the interferometer. We now define various
guantities needed for the discussion of interferometer properties; the atom de
Broglie wavelength (I @), the angle of incidence of the atom beam on the grating
measured with respect to the grating surface (q), and the grating period p. The
height (h) (measured along the grating lines) and width (w) of the beam are also
needed to determine the requirements on flatness and alignment. The various re-
guirements on relative alignment of the gratings are of two types. Thefirstison
the flatness of the gratings and the relative alignment of the grating surfaces, that
isthe collinearity of the vectors normal to the grating surfaces. The second isthe
alignment of the grating lines, that is the relative alignment of the gratings with
respect to rotations about the surface normals.

For transmission gratings it is well known that an arrangement of three
equally spaced gratings has may desirable propertiesi!. This (Fig. 1a) isthe same
geometry asis used for neutron interferometers. This type of interferometer is
completely insensitive to the incident angle and is achromatic, al requirements on
relative alignment are on the scale of the grating period — independent of , and
much smaller than, | . The grating lines must be parallel to ~ psin (g)/h , and the
requirement on grating surface alignment expressed as a requirement on Dq is that

Dg<p sin’(q)/wcos (q) .

51 B, J. Chang, R. Alferness, and E. N. Leith, Appl. Optics, 14, 1592 (1975).
For the specific case of atom interferometers see V.P. Chebotayev et al., J. Opt.
Soc. Am. B , 2(11), 1791 (1985).
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Figure 1: Three different interferometer geometries, transmission
gratings (a), reflection gratings (b), and thin reflective gratings (c). In all
cases angles are greatly exaggerated and diffracted beams that do not

end at one of the detectors are not shown.

For reflection gratings the dependance of the separation of the Oth and 1st
order diffracted beams on the angle of the incident beam make it harder to find
geometries which are white fringed2. Figure 1b shows an example of awhite
fringe geometry for reflection gratings. The requirement on surface alignment is
| g/d where d isthe larger of h and w. The conditions on line alignment are the
same as for transmission gratings, ~ psin (qg)/h .

The properties of an atom interferometer made with ‘conventional’ beam

splitters (fig. 1c) are different in several important respects. The requirement on

52 steven J. Wark, William A. Hamilton and Goffrey |. Opat, J. Modern
Optics., 34, 1375 (1987); D. E. Pritchard and D. W. Keith, U.S. Patent pending.
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grating surface alignment is| gg/d where d is as above, thisisindependent of the
grating period. Thereis no requirement on the grating line alignment. Unlike the
two previous cases the area of a conventional beam splitter interferometer is
independent of | g, which isimportant when one considers using atom

interferometers as rotation sensors.

Our Interferometer

We are currently constructing a three transmission grating interferometer for
sodium atoms. We now turn to a detailed description of thisinterferometer with
the hope that the problems involved have some general interest. The present (late
October 1989) state of this experiment is that all of its components have worked
once, and we are hard at work. Our interferometer differs from the design
described above only in that the the interference is detected as a spatial variation
of particle density at the third grating, rather than by the variation in intensity in
two beams with different directions of propagation in the far field. This detection
scheme is of course only possible with amplitude gratings, it has the advantage
that it requires only 2/3 the length of the separated beam method which gives us
3/2 greater separation of the beams in the interferometer for the fixed length of
our beam tube.

The interferometer is built with a grating spacing of 60 cm giving usa 60 um
beam separation at the middle grating. This allows us to completely separate a 30
um wide beam which would have an intensity of ~106 sec-1 using our existing
apparatus with no gratings in place. A realistic estimate of our anticipated final
signal strength may therefor be obtained from the properties of the individual
gratings. Attenuation caused by the primary grating and the grating support
structure gives an intensity in the Oth order of 1/8 of the incident intensity, and of

1/16 in each of the £1st orders. These factors combine to give an intensity at the
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maximum of afringe after transmission through all three gratings of only 0.005 of
the incident intensity. The near field detection scheme limits the theoretical fringe
contrast to 4:1, resulting in afinal interference signal of ~0.004 of the incident in-
tensity. Thus, the final interference signal through the interferometer is
anticipated to be at most ~4 ~ 103 sec'1: this signal will be reduced by any
misalignment of the gratings. This signal greatly exceeds the noise of the detector
~10 sec'1, alowing usin principal to see the fringes with a S/N of ~4 after a0.01
Sec averaging time.

There are avariety of experimental complications not mentioned in this
description of our interferometer. We will now discuss the two of these which
appear the most problematical and which are likely to be problemsin any atom
interferometer: vibration isolation and grating alignment.

We begin our discussion of vibration isolation with areview of the vibration
problems relevant to our interferometer. There are two requirements, the first is
that the three gratings are stationary relative to each other to within ~1/4 period
(50 nm) during the time the final grating integrates the intensity at a given
position. Thus, the rms amplitude of relative vibrations integrated over all
frequencies greater than the reciprocal of the integration time must be less than
~50 nm. The second requirement is on motion of the gratings as a unit due to
acceleration of the center of mass of the grating system during the time it takes for
the atoms to traverse the interferometer, the motion due to this acceleration must
also be less than ~1/4 period. In our interferometer the transit timeis 1.3 msec
which implies that the rms accel eration below ~900 Hz must be less than 102 ms
2.

We have attacked our vibration problem using a combination of passive
isolation and active feedback. The passive isolation system consists of small

pneumatic feet which support the apparatus and act like damped springs with a2
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Hz resonant frequency. This simpleisolation system reduced the rms motion due
mainly to building noise by an order of magnitude to ~ 0.5 um. The active
feedback system is used to stabilize the relative positions of the three gratings at
frequencies below ~150 Hz. This system works best at low frequencies (< 10 Hz)
where the passive system is |least effective. The reduction of relative motion
provided by the active system will allow us to use much longer integration times
when we are looking for the interference signal. The active feedback system uses
alaser interferometer which has the same transmission grating geometry as the
atom interferometer. The gratings for the optical interferometer are mounted on
the same three tranglation stages as the matter wave gratings in order to record
the exact relative alignment of the matter wave interferometer. The error signal
from the optical interferometer provides a measure of the relative alignment of the
three grating platforms, it is applied to a Peazo-electric trandlator (PZT) through a
feedback network in order to stabilize the platforms. Using this system we have
reduced the relative rms motion of the gratings from ~1500 to 40 nm.
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Figure 2: A schematic of our interferometer showing the active

vibration isolation system. Not to scale.

In order that all points along the height (3 mm) of our ribbon shaped beam
have the same phase of interference signal it is necessary that the gratings be
aligned with respect to rotations about the beam axis to an angle of ~10->rad. We
have accomplished this by using a technigue based on the optical polarizing
properties of the gratings. The 0.2 um-period grating lines act as wire grid
polarizersfor light. In principal, it would be possible to align two gratings by
rotating them so as to maximize the amount of light transmitted through the pair.
Thisisnot practical because the transmitted intensity is proportional to the square
of the relative angle between the gratings (for small angles), requiring intensity
comparisons to apart in 1010, However, if the polarization of the incident light is
modul ated about some center angle at frequency f, the amount of light

transmitted with modulation frequency 2f, is linearly proportional to the angle
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between the grating and the center angle. We have used this techniquess to align
the gratings inside our machine to better than 10-4 rad, which will be sufficient for
our purposes since we can afford to search through the final range of ~10

possible angles.
ATOM INTERFEROMETER EXPERIMENTS
We expect the atom interferometers will one day prove useful in the study of

anumber of problemsin precision metrology, fundamental quantum mechanics,

and atomic physics.

Metrology, especially General Relativity

In principal atom interferometers could be used in the manner of optical
interferometers to measure fundamental quantities such as acceleration, length,
and angular velocity. In practice, atom interferometers are very unlikely to be
useful in the measurement of length or acceleration. Thisis because their
advantages over optical interferometers are only due to the ratio of optical to
atom de Broglie wavelength in the case of reflective interferometers (not likely to
work for smal | gp), or on the ratio of optical wavelength to grating period in the
case of diffractive interferometers. In either case these advantages will be
outweighed by the superior fringe resolution and response time available from
optical interferometers. In the area of basic metrology the promise of atom
interferometersisin the sensing of inertial rotations, in this case both the low
speed (compared to light) and the short wavelength of atoms are advantageous.
The Sagnac effect sensitivity measured in radians of interferometer phase shift per

unit of angular rotation frequency is 4pmA/h for a matter wave interferometer of

53 E. H. Anderson, A. M. Levine, and M. L. Schattenburg, Appl. Optics Lett.,
27,3522 (1988).
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area A, whereasitis4onA/cl for an optical interferometer operating at
wavelength | . For example, in order for rotation at one earth rate We » 10 sec to
cause a shift of onefringe in an interferometer using Xe atoms, it would need to
have an enclosed area of 10-4m?, to achieve the same sensitivity in an interfer-
ometer using 0.5 pm light would require an area of 106 m2. Of course, optical
interferometers have the advantage that isis easy to fold the beam path so that
the light makes many trips around the enclosed area effectively multiplying the
sensitivity (and decreasing the frequency response) by the number of round trips.
However, even if it were possible to build an optical ring cavity that had decay
times equal to the millisecond transit timestypical of atom interferometers, it
would still be less sensitive by the wavelength ratio. It is worth noting that for
interferometers using diffractive beam splitters at small incident angles (the
simplest technology), the fact that Al gg means that the rotation sensitivity of
the interferometer isinversely proportional to the atoms velocity; independent of
the mass.

The obvious use for such precise rotation sensorsis for tests of general
relativity such asthe search for the relativistic frame drag. The relativistic effects
which might be observable with these techniques are as follows>: new limitson
the preferred frame parameter in the PPN formalism (~10-8 W)55, the vel ocity
dependant frame drag (~10-° W)6, and the true Lense Thirring effect (~10-10\Wg)9.
The second two of these effects are most easily measured by comparing an
orbiting gyroscope to the position of the fixed stars as measured from a platform

fixed to the gyro. The difficulty of measuring the frame drag can be appreciated

54 |, E. Stodolsky, Gen. Rel. and Gravitation. 11, 391 (1979).

55 M. O. Scully, M. S. Zubairy, and M. P. Haugan, Phys. Rev. A, 24, 2009
(1981).

56 C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San
Francisco, 1973), p. 1117.
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when one considers that Everitt et a at Stanfords” have been developing an
experiment of this type (which employes a magnetically levitated spinning

superconducting sphere as the gyro) for the last twenty years.

Fundamental Tests of Quantum Mechanics

Most of the experiments in fundamental quantum mechanics that have been
performed using neutron interferometers could be improved by using atom
interferometers. Thisis due both to the range of atomic properties potentially
available and to the high brightness of atom sources as compared to neutron
sources. We will consider two experiments that have not been performed with
neutrons; an atom Hanbury Brown and Twiss experiment and a Berry's phase
experiment with electric fields and integer spin particles.

Although not an interferometer in the same sense as described above, a
conceptually simple application of atom beam splittersis the possibility of
experimentally measuring the atom atom correlation functions in atom beams. The
general picture of such experimentsisshown isFigure 3, it is closely analogous
the the Hanbury Brown and Twiss® experiment that measured second order
correlations in photon counting. When performed using a‘classical’ light source
this experiment gives a coincidence rate at t=0 which is twice the rate at
t® ¥ . This may be interpreted as photon bunching due to the Bose statistics of
the electromagnetic field. There has been much recent interest in this phenomena
which has centered around the production of anti-bunched states of the of the
electromagnetic field in which the coincidence rate goes to zero at t=0.

Correlation experiments with atoms would give access to quantum counting

57 . D. Fairbank, B. S. Deaver Jr, C. F. W. Everitt, and P.F. Michelson eds.,
Near Zero (W. H. Freeman and company, New York, 1988) VI.3.

58 R. Hanbury Brown and R. Q. Twiss, Nature, 177, 27 (1956).
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statistics in afundamentally different regime: unlike photons, atoms are either
bosons or fermions and is possible to define a positional wave function for atoms.
One expect that given Dt (defined below) small enough the coincidence rate at
t=0 will be zero for abeam of fermions and will be twice therate at t® +¥ for a

beam of Bosons from athermal source.

DR

‘ ‘ : | Dt coincidence |—» count rate

Figure 4. Schematic of an atom Hanbury Brown and Twiss

experiment. d; and do are the diameters of the collimation pin-holes.

The practical possibility of performing such an atom correlation experiment
depends on the expected counting rate. We will calculate the coincidence
counting rate as a function of the following beam parameters. At first we will
assume that the experimental parameter Dt, the time window within which counts

are registered as coincident can be chosen as small asis necessary.

Quantity Symbol Typical vaue

source brightness B 1017-1021 sr-1 secl cm2
speed ratio ssv/iDv 1-103

mass m 1-100 AMU

mean velocity Y 102-105 cm sec'!

We want the detectors to sample the same single transverse mode of the

atom wave function. Therefore, the second aperture must fit within the diffraction
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pattern of thefirsti.e. d>=L | gg/d1, which implies that the flux through the second

dit is given by (ignoring factors of p/4)
f:Bdi(dg):Bl ®
L2

In addition to requiring that the detectors sample the same transverse mode we

will also choose Dt to be equal to the atom coherence timet so that the detectors

sample a single longitudinal mode.

| o
— dbg
tv“

If we assume that the counting rate is low, i.e. that the number of countsin Dt is
gmdl;
3
D=l &5 «1
then the coincidence rate given by Poisson statisticsis

Dt= '?:g/f’ ® 10;;55625 (cgswith min AMU)

We believe that it will soon become experimentally feasible to measure the

effects of atom-atom correlation in beams. Anideal system would be metastable
He for which laser slowing techniques and fast detectors are readily available. For
example; alaser slowed H€e" source with afinal velocity of 100 cm sec-land a
brightness of 1013 sr-1 sec-1 cmr2 seems experimentally realizable, and would give
a coincidence counting rate of 1 Hz. In this case the coherencetimeist =107 sec,
and one can make Dt equal to (or even lessthan) t by counting the He" directly

on electron multipliers.

Atom interferometers are an ideal system in which to investigate the
predictions by M. V. Berry%, Aharonov, and Anandan regarding modifications
to the adiabatic theorem. Despite the numerous recent tests of Berry's phase, atom

interferometers allow atest of the theory which isnovel in several respects. A

59 M. V. Berry, Proc R. Soc. Lond. A, 392, 45 (1984).
60 Y. Aharonov and J. Anandan, Phys. Rev. Lett., 58, 1593 (1987).
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Berry phase experiment involving the effect of electric fields on Nawould be the
first such experiment involving non-zero mass bosons and the first where the
perturbing field appeared quadratically in the hamiltonian. It should also be
possible to test the Aharonov-Anandan geometrical phase in the case of non-

adiabatic change.

Atomic Physics

An atom interferometer measures any interaction which differentially affects
the energies of particles traveling along separate paths through the
interferometer. Thus, atom interferometers could be used to measure such
guantities as the electric polarizability or magnetic susceptibility of atomic ground
states, or to measure a basic null effect such as the charge neutrality of atoms. In
order to determine what problems atom interferometers are most suitable for we
must consider the factors which limit the precision of interferometric
measurements. The relative precision with which awhite fringe interferometer can
be used to measure adifferential energy shift DE is limited by the number of
visible fringes, which is approximately given by the speed ratio (S) of the atom
beam. The relative precision of energy measurement, DE/E islimited to Df/S where
Df isthe fractional accuracy of fringe resolution. If the interferometer is shot noise
limited Df p Lvn where n is the total number of atoms counted to determine the
phase of the interferometer fringe. These considerations suggest that atom
interferometers may be most profitably employed as balance (null) metersi.e.,
when used to balance the effects of two different interactions applied to opposite
sides of the interferometer. For example, an interferometer only dightly more
advanced than our first device should be able to measure the ground state
polarizability of sodium to ~10-2 but, its ability to measure the ratio of

polarizability to magnetic susceptibility would be limited only by the precision
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with which the strength of the individual fields could be controlled — perhaps

two orders of magnitude better.

ATOM OPTICAL ELEMENTS

Most of the recent work in atom optics has involved the use of light
pressure forces to manipulate the atom beams. Mirrorsst, lensess?, and gratings for
atoms have been demonstrated using the stimulated gradient forces on atomsin
near-resonant optical radiation. We will not discuss these developments, instead
we will review atom optical elements that do not involve light forces. we ignore
light force atom optics both to contain the discussion and because of the obvious
advantages of developing atom optical elements that are independent of laser
technology. It isinteresting to note that all the grating types (except the Kapitza-
Dirac effect and the reflection/transmission grating) described above have been
realized for neutrons and for X-rays. It isfruitful to look for aternative atomic
optical elements based on the technology developed for x-ray optics. It should be
possible to adopt grazing incidence x-ray mirrors, lenses, and diffraction gratings
for use with atom beams. These techniques are based on the specular reflection of
atoms from smooth surfaces, which may occur when the surface roughnessis
much less than the wavelength corresponding to the momentum of the atom
perpendicular to the surface. For example, efficient specular reflection of reactive
akali atoms with thermal velocity at angles of up to 40 mrad has recently been
reported by Haroche et al®3. At least two reflective lenses for atoms have recently

been demonstrated. Doak has made a cylindrical lens for a He beam by reflecting

61v. I. Balykin, V. S. Letokhov, et al., JETP Lett. 45, 353 (1987); V. .
Balykin, V. S. Letokhov, et al., Phys. Rev. Lett. 60, 2137 (1988).

62 J.E. Bjorkholm, R.R. Freeman, A. Ashkin, and D.B. Pearson, Phys. Rev.
Lett. 41, 1361 (1978); V.l. Balykin and V.S. Letokhov, Opt. Com. 64(2),151 (1987)

63 A. Anderson, S. Haroche, E. A. Hinds, W. Jhe, D. Mexchede, and L. Moi,
Phys. Rev. A , 34, 3513 (1986).



99

it off an Au coating on a bowed micawafer at angles of about 30 degreess*. A
most favorable system for demonstrating atomic reflection is the reflection of H
off of films of He at cryogenic temperatures. Berkhout et al 6 have made a
spherical mirror coated with liquid He that focuses an 18 mm diameter beam of H-
atoms down to 0.5 mm. Further progress in reflective atom optics is hampered by
the deficiency of theoretical or empirical knowledge of the necessary conditions
for the reflection of atoms, especially slow atoms, from surfaces.

Another class of x-ray optical elements that could be adapted for use with
atoms is based on transmission through micro-fabricated structures. Atom optical
elements based on transmission have the advantage that they work for any
atomic species independent of surface physics or laser technology. Since our
demonstration of transmission diffraction gratings for atoms we have used similar
methods® to produce 200 nm-period gratings as thin as 5 nm. These gratings can
betilted so as to increase their effective dispersive power, in addition they are a
first step towards the reflection/transmission gratings described above.
Fabrication methods similar to ours have been used to produce free standing

zone-plates which should work as lenses for atom beams.

Slow sources

64 Bruce Doak (AT&T), personal communication.

65 ], J. Berkhout, O. J. Luiten, I. D. Setija, T. W. Hijmans, T. Mizusaki, and J.
T. M. Walraven, Phys. Rev. Lett., 63, 1689 (1989).

66 A. M. Hawryluk, N. M. Ceglio, R. H. Price, J. Melngailis, and H. I. Smith,
J. Vac. Sci. Technol., 19(4), 897 (1981); N.M. Ceglio, A.M. Hawryluk, and R.H.
Price., Proc. S.P.l1.E. 316 (High Resolution Soft X-ray Optics), 134 (1981); E. H.
Anderson, C. M. Horwitz, and H. I.Smith, Appl. Phys. Lett. , 49, 874 (1983); H. I.
Smith, E. H. Anderson, A. M. Hawryluk, and M. L. Schattenburg, in X-Ray
Microscopy, (Springer Series in Optical Sciences, vol 43), eds. D. Rudolph and G.
Schmahl,

(Springer-Verlag), Berlin, Heidelberg, 1984.
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A key barrier to practical use of most of the atom optical devices discussed
above is the poor brightness of existing slow atom sources. A number of radiation
pressure atom slowerss” have been demonstrated. They all work by arranging that
an atom decelerating in the slower is continually exposed to radiation that is
tuned slightly to the red of the atomic resonance and is directed opposite to the
atomic velocity. This Doppler tuning condition may be met either by frequency
chirping the laser or by Zeeman tuning the atom's resonance. In either case the
atoms accumul ate random transverse momentum due to the scattering of the
incident photons, the rms transverse momentum is proportional to the square root
of the number of photons needed to slow the atom times the total change in atom
momentum.

The tools necessary to increase the brightness of slowed beams are available,
but they have not as yet been assembled into a bright slow source. The simplest
way to increase brightness is to apply transverse cooling in the form of 'red
molasses' to the atoms emerging from the end of the slower. A more powerful
general method for increasing brightnessis to first apply transverse cooling
followed by alens (which aone, increases flux but not brightness), followed by a
second region of transverse cooling at the focus of the lens. Another possibility
would be to replace the cooler-lens-cooler combination with a single two
dimensional spontaneous force optical trap. It is clear that there are no theoretical
barriers to the development of laser slowed and intensified atom sources — the
development of such sources is aworth while challenge for experimentalistsin
atom optics. The work on beam splitters was funded by the National Science
Foundation (PHY 86-05893) with help from the Joint Services Electronics
Program (DAAL03-86-K-0002) which supports the M.I.T. Submicron Structures

67 William D. Phillips, John V. Prodan, and Harold J. Metcalf, JOSA-B, 2,
1751 (1985).
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Laboratory. Work on the Atom interferometer is supported by O.N.R.
(N0001489-J-1207) and A.R.O. (DAA L03-89-K-0082).
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A3) An Interferometer for Atoms

An Interferometer For Atoms

David W. Keith, Christopher R. Ekstrom, Quentin A. Turchette,
and David E. Pritchard

Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

ABSTRACT

We have demonstrated an interferometer for atoms. A three
grating geometry is used, in which the interfering beams are
distinctly separated in both position and momentum. We used a
highly collimated beam of sodium atoms with a de Broglie wave-
length of 16 pm and high-quality 0.4 mm-period free-standing grat-
ings which we fabricated using a novel method. The interference sig-
nal is 70 cps, which allows us to determine the phase to 0.1 rad in 1

min. Applications of atom interferometers are briefly discussed.
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There have been several recent proposals for the realization of an
atom interferometers8, and a number of experiments have
demonstrated interference of atoms®°. In addition to the work
reported here, several other groups have recently demonstrated
interference fringes for atoms?0. We report the demonstration of the
first interferometer for atoms in the sense that it uses amplitude
division to separate the beams in momentum and distinctly
separates the beams in space’l. We note that mater wave
interferometers have been previously demonstrated for electrons
and neutrons?2

We used a three grating white fringe geometry in which the
phase of the interference fringes is independent of incident
wavelength and angle”3. Such a geometry allows the largest

interference signal for a given beam brightness. Figure 1 shows a

68 5. Altshuler and L. M. Frantz, U. S. Patent 3,761,721 (1973); V. P.
Chebotayev et al., J. Opt. Soc. Am. B 2, 1791 (1987); D. W. Keith, D. E. Pritchard, in
New Frontiers in QED and Quantum Optics, A. O. Barut, ed., (Plenum Press, 1990);
Ch. J. Borde, Phys. Lett. A 140, 10 (1989).

69 |. Estermann, and O. Stern Z Phys. 61: 95 (1930); D. W. Keith, M. L.
Shattenburg, H. I. Smith, D. E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988); A.
Faulstich, O. Carnal, J. Mlynek, in: Proc. Int. Workshop on Light Induced
Kinetic Effects, Elba (Italy), L. Moi et al, eds., (1990).

70 0. carnal, J. Mlynek, preceding paper in this Phys. Rev. Lett; F. Riehle,
T. Kisters, et al. submitted to Phys. Rev Lett.; S. Chu personal communication.

71 Devices such as the one presented here in which wave-fronts are
divided (using either wave-front or amplitude division), spatially separated,
and purposefully recombined (e.g. using reflection or refraction) are
universally referred to as interferometers. When all of these conditions are
not met, there is a division of opinion. In particular, Young’s experiment is
not generally classed as an interferometer (e.g. Born and Wolf, Principals of
Optics, (Pergamon press, sixth ed. 1980), chapter VII).

72 Neutrons: H. Maier-Leibnitz and T. Springer, Z. Phys. 167, 368 (1962);
The first "perfect-crystal” neutron interferometer reported was by H. Rauch,
W. Treimer, and U. Bonse, Phys. Lett. 47A, 369 (1974); Electrons: L. Marton, J.
Arol Simson, and J. A. Suddeth, Phys. Rev. 90, 490 (1954).

73 B. J. Chang, R. Alferness, and E. N. Leith, Appl. Opt. 14, 1592 (1975). Our
geometry is identical to that used in a three diffraction grating interferometer
for neutrons: M. Gruber, K. Eder, A. Zeilinger, R. Gahler, W. Mampe, Phys. Lett.
A 140, 363 (1989).
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schematic of our experiment which we will describe in four parts: the
atomic beam system, the gratings, the interferometer system, and
the data analysis method.

Our atomic beam system has been considerably improved since it
was last described’4. It is a supersonic nozzle beam of sodium in an
argon carrier gas. Adiabatic expansion of the gas after it leaves the
nozzle results in a fairly monochromatic beam: Dv/v = 12% with v =
103 m/s. The sodium has the same velocity as the carrier gas giving
it a de Broglie wavelength of 16 pm. The beam is collimated by two
20 mm slits spaced 0.9 m apart to forma 1 mm ~ 20 nm ribbon-
shaped beam with a divergence of 20 nrad. Individual sodium atoms
are detected after surface ionization on a 25 nm-diameter hot wire
(80% Pt, 20% Ir alloy) located 1.6 m downstream from the second slit.
In order to achieve high ionization efficiency it was necessary to ex-
pose the wire to oxygen at regular intervals: 10-3 torr Oz for ~1 min
every ~30 min proved to be sufficient. Under these conditions the
detector’s time response was ~15 msec and the average background
was ~20 cps. A key problem is that the background signal is domi-
nated by highly non-Poissonian bursts (see example in fig. 3).
Although we cannot directly measure the efficiency we believe that
it is better than 10%. In any case, greater wire efficiency, combined
with improvements to our vacuum system, and the sodium source,
now allow us to achieve detected fluxes of >1 MHz through a 1 mm
high slit. This corresponds to a detected source brightness of 1019

secl cm-2 str-1.

74 p. L. Gould, MIT PhD thesis; D. W. Keith, M. L. Shattenburg, H. I. Smith, D.
E. Pritchard, Phys. Rev. Lett. 61, 1580 (1988); most recently in: D. W. Keith, MIT
PhD thesis.
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The quality of gratings necessary for an interferometer is consid-
erably higher than is needed to demonstrate diffraction of atoms. In
particular, the gratings must be phase-coherent over their entire
area. This implies that the grating lines must be straight to the order
of their line width over the full height of the grating. The transmis-
sion of each grating support structure (necessary to achieve the re-
quired line straightness) should be high since the final interference
signal will be proportional to the third power of this transmission. In
addition, the grating line to space ratio must be near 1:1; ideally the
grating spaces should be 0.65 period for the first grating and 0.5 for
the other two.

Our diffraction gratings consist of arrays of slots in a tensile
silicon nitride membrane. Several membranes are formed ona 12~
7 mm Si chip. The gratings we used were made in two sizes; 750 °
40 mm and 500" 140 nm with periods of 400 and 200 nm. The
grating fabrication process, described briefly below, will be detailed
elsewhere?s. First a double polished, <100> Si wafer (250 nm thick) is
coated on both sides with 200 nm of low-stress nitride (SizNg) by
plasma-enhanced low-pressure chemical vapor deposition.
Conventional photolithography is used to pattern the nitride on the
back side of the wafer with small rectangles which are aligned to the
crystal axis. The Si under these rectangles is etched along the <111>
planes using a hot KOH solution, leaving the nitride windows on the
front side. The front side of the wafer is then coated with 150 nm of

polymethyl methacrylate (PMMA) film and then with 15 nm of Au.

75 D. W. Keith and M. J. Rooks, forthcoming in: J. Vac. Sci. Technol.
(Nov/Dec 1991)
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Electron-beam lithography is used to expose the grating patterns in
the PMMA. We used a JEOL JBX 5DII(U) e-beam writer, and took care
to minimize the effects of field stitching. The Au is needed to reduce
charging of the substrate which can cause writing distortions. The
exposed PMMA and the Au are then removed leaving a direct mask
for reactive-ion etching (RIE) of the nitride. It was necessary to de-
velop a highly directional RIE process, which was able to selectively
etch nitride using PMMA as a mask. By this method we have made
high-quality 200 and 400 nm-period gratings; figure 2 shows a
completed example.

The interferometer consists of three 400 nm-period gratings
mounted 0.663+0.003 m apart on separate translation stages inside
the vacuum envelope. During operation, the 0th and 15t order beams
from the first grating strike the middle grating (which is 140 nrm
wide) where they are diffracted in the 1stand -15t orders so that
they converge at the third grating. At the second (middle) grating the
beams have widths of 30 mm (FWHM) and are separated by 27 nm.
The first two gratings form an interference pattern in the plane of
the third grating, which acts as a mask to sample this pattern. The
detector, located 0.30 m beyond the third grating, records the flux
transmitted by the third grating.

In order to observe stable fringes, various requirements on me-
chanical stability and alignment must be met. These requirements
are a consequence of the sensitivity of the interferometer to the ro-
tation, acceleration and translation of the gratings. We now describe

these problems, and our solutions to them.
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The gratings must be aligned with respect to rotations about the
beam axis to angular tolerance given by the beam height over the
period (10-3 rad). We aligned the gratings by using the 4 nm-period
support structures as diffraction gratings for a Helium-Neon laser.
Our grating fabrication method ensures that the support structure
grating is orthogonal to the primary fine-period grating to an accu-
racy equal to the line straightness of either grating. The primary
limitation of this technique is that the grating windows are only 40
mm wide, so that the diffracted laser spots have an angular width of
10-2 rad. In practice we were able to achieve alignment to about
2 10-3 rad. The final grating alignment is performed while the
experiment is operating, by rotating the middle grating so as to
maximize the interferometer fringe contrast.

The interferometer is sensitive to accelerations of the three grat-
ings as a unit. The sensitivity in radians per unit of acceleration is
given by 2pl2/v2p where | is the distance between gratings, v the
atom’s velocity, and p the grating period. In our interferometer this
is 13 rad m-1 sec2, which can be understood as the phase change due
to the translation of the gratings during the atoms 1.3 msec transit
through the interferometer. Rotation of the interferometer about the
axis perpendicular to its enclosed area causes a phase shift (the
Sagnac effect) proportional to the rotational velocity which is given
by 4pl2/pv. In our interferometer this sensitivity is 1.4 ~ 104 sec.
Thus, rotation at one earth rate produces a phase shift of one radian.
In addition to the phase shifts caused by motion of the three gratings
as a unit, the interferometer is sensitive to the relative position of

the gratings. In order to observe any fringe contrast, it is necessary
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that the relative positions of the three gratings be stationary to
within ~1/4 period (100 nm) during the time the final grating sam-
ples the fringe pattern.

We have solved these problems using a combination of passive
isolation and active feedback. The passive isolation system consists of
small rubber feet which support the apparatus. This simple isolation
system reduced the rms motion, due mainly to building noise, by an
order of magnitude to ~ 0.5 mm. It is difficult to improve this further
by using more sophisticated pneumatic supports because such sys-
tems have unacceptably high levels of low-frequency rotational
noise. The active feedback system uses a laser interferometer which
has the same transmission grating geometry as the atom interfer-
ometer. The 3.3 nm-period gratings for the optical interferometer are
mounted on the same three translation stages as the matter wave
gratings in order to record the relative alignment of the matter wave
interferometer. The error signal from the optical interferometer
measures the relative alignment of the three grating platforms; it is
applied to a piezo-electric translator (PZT) through a feedback net-
work in order to stabilize the platforms. Using this system we have
reduced the relative rms motion of the gratings from ~500 to 40 nm.
The active feedback system is used to stabilize the relative positions
of the three gratings at frequencies below ~100 Hz. This system
works best at low frequencies (< 10 Hz) where the passive system is
least effective. The reduction of relative motion provided by the ac-
tive system allows us to use long integration times when we are

looking for the interference signal.
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The data necessary to determine the interferometer phase and
fringe contrast is acquired as follows. A triangle wave at ~0.2 Hz is
applied to the reference port of the optical interferometer feedback
network with the amplitude of the reference wave chosen so that the
optical interferometer is driven through 1/3 of an optical fringe. The
raw signal from the optical interferometer is then recorded
simultaneously with the signal from the atom counting electronics.
Both signals are sampled at 10 msec intervals for a total time of ~2
min.

The data are then analyzed by first calculating the optical inter-
ferometer's relative position from the measured intensity, the optical
fringe limits, and the known 3.3 mm-period of the gratings. Figure 3
shows an example of these data. Next, the data obscured by noise
spikes from the hot wire are discarded (typically about 2% of the to-
tal samples). This is done automatically, without reference to the
position information. Finally, the atom count data are summed into
bins according to the position at which they were taken and the
result is then divided by the time spent taking samples at that
position. Figure 4 shows the measured interference signal.

We have performed extensive numerical simulations of this
experiment. The simulations were two dimensional with a transverse
resolution of 1 nm, and included an incoherent sum over source
points with the experimentally measured velocity distribution. The
calculated contrast in this configuration is 25%; our measured
contrast is 13%. We ascribe the discrepancy to a number of small
effects including grating imperfections and creep in the alignment

PZT.
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The peak to peak amplitude of our interference signal is 70 cps,
which enables us to determine the interferometer phase to a preci-
sion of 0.1 rad in 1 min. The large low-frequency gain of our position
stabilization system provides measured atom-interferometer phase
drift of less than 0.1 rad over 10 min.

In the near future we plan to insert a septum between the beams
of our interferometer. If needed, we can increase the beam separa-
tion by using 0.2 mm-period gratings and by using Xenon as a carrier
gas in our source. We should then be able to make accurate mea-
surements of the Aharonov-Casher’é phase, and the polarizability of
sodium.

Atom interferometers may also be used for tests of basic quan-
tum mechanics and perhaps for tests of general relativity’”.

We would like to thank Mike Rooks and other staff at the
National Nanofabrication Facility. Bruce Oldaker and Garth Zeglin
provided valuable technical assistance during the early phases of this
work. We gratefully acknowledge funding from: ONR contract NOO14-
89-J-1207, ARO contract DAALO3-89-K-0082, and JSEP contract
DAALO03-89-C-0001.

76 Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984).
77 L. E. Stodolsky, Gen. Rel. and Gravitation 11, 391(1979)
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Figure captions

Figure 1. (thesis Fig. 3.1) A schematic of our interferometer
showing the active vibration isolation system. Not to scale. The 0.4
mm-period atom gratings are indicated by a vertical dashed line, the
3.3 nm-period optical gratings by a vertical solid line.

Figure 2 (left half of thesis Fig. 2.3) A Scanning Electron
Micrograph of a completed 200 nm-period grating.

Figure 3. (thesis Fig. 3.9) Ten seconds of raw data. The upper
graph shows the relative transverse position of the interferometer
gratings as measured by the optical interferometer. The lower graph
shows the number of atoms per 10 msec bin. Peak heights of the off-
scale hot wire noise bursts are 92 and 304 counts respectively.

Figure 4. (thesis Fig. 3.10) Interference signal from 400 seconds
of data (~23 seconds per point). Background hot wire noise of 40 cps
subtracted. The solid line is a least square fit to a sine function with
400 nm period. Error bars are one standard deviation assuming
Poissonian noise, and slightly underestimate the noise because of the

super-Poissonian character of the hot wire background.
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A4) Free-standing gratings and lenses for atom optics (abstract)



