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Numerical model of a multiple-grating interferometer

Quentin A. Turchette,* David E. Pritchard, and David W Keith

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received August 12, 1991; revised manuscript received March 31, 1992; accepted April 4, 1992

A numerical model of a multiple-grating interferometer is presented. The foundation of the model is an effi-
cient algorithm that computes the propagation of a wave governed by the Helmholtz equation between two par-
allel planes in O(N log N) time, where N is the number of transverse sample points. The algorithm provides a
large improvement in computational time over O(N2 ) brute-force approaches and has the advantage that the
computational time increases linearly with the number of planes in the interferometer. The model is applied to
a three-grating atom interferometer to calculate the loss of contrast in the interference signal as a function of
longitudinal grating misposition and to investigate the effects of wide beam-collimating slits.

1. INTRODUCTION

There has been much recent interest in the diffraction
and interference of atomic de Broglie waves.'-9 Various
atom diffraction techniques are being used to make inter-
ferometers for atoms. In this paper we present a numeri-
cal model of a general interferometer that uses thin
amplitude and/or phase gratings as its diffracting ele-
ments. The model has at its foundation an efficient algo-
rithm that calculates the propagation of a wave between
two parallel planes by using convolutions. While the over-
all approach addresses a general optical problem, the
model is developed here for application to diffraction prob-
lems of geometry commonly found in matter-wave optics:
small wavelength-to-grating-period ratios with conse-
quently small diffraction angles and large longitudinal-
length-to-transverse-width ratios. We first treat the
problem in a general sense and then specialize to this
regime, which contains the problems that most interest us.

We developed this numerical model to determine the ef-
fects of changing certain parameters in our three-grating
atom interferometer,' for which the analytic methods of so-
lution are cumbersome or unavailable. One set of parame-
ters that we vary are the widths of the beam-collimating
slits. This problem requires a computational model be-
cause the detector is in the near field of the diffracted
image of the collimation slits but in the far field of the
diffraction gratings, making analytic techniques inade-
quate. Another problem is to determine the loss of con-
trast owing to unequal distances between gratings. This
problem is complicated by the fact that the spatially sepa-
rate beams of the incorrectly spaced interferometer do not
exactly recombine as they do in the properly spaced inter-
ferometer. We first applied our numerical model to an
ideal version of our interferometer and then studied the
effects of adding these imperfections; we present the re-
sults here.

The model is applicable to a wide range of interferome-
ters and other diffraction experiments. Sources of finite
size and wavelength distribution can be accommodated.
Diffraction from any screen that can be treated as a thin
amplitude and/or phase device can be calculated. This
type of diffracting screen includes not only the obvious
examples of fabricated transmission gratings and other

fabricated transmission devices for light or atom waves
(such as those used in Refs. 1-5 for atoms) but also, for ex-
ample, standing-wave light gratings in the Kapitza-Dirac
regime for atom waves.6 In addition, nonperiodic struc-
tures such as single slits and zone plates can be treated
with this model.

Our numerical techniques represent an advance over
those used by other investigators computing similar prob-
lems of matter-wave diffractions Clauser and Reinsch
recently developed techniques that may permit the ana-
lytic calculation of some of the results presented in this
paper for devices with periodic structure." Our numeri-
cal methods are applicable to more-general diffracting
screens and easily predict minute details that may not
have obvious analytic manifestations. Thus the two ap-
proaches complement each other.

The paper is organized as follows. In Section 2 the
physical theory of the multigrating interferometer is de-
scribed in a way that lends itself to a concise computa-
tional solution. In Section 3 the conversion of the physical
problem into a numerical problem, the numerical criteria
required in the calculation, and the fast algorithm for
completing the calculation are described. In Section 4 the
model is applied to our three-grating atom interferometer
and used to determine the effects of imperfections in in-
terferometer parameters.

2. BACKGROUND THEORY

The problem is to solve the Schrodinger equation for the
propagation of waves through a multiple-grating inter-
ferometer such as that shown in Fig. 1. We make two key
assumptions:

(a) The problem is time independent, and consequently
the source can be treated as an incoherent ensemble of
monochromatic point sources.

(b) The effect of the gratings and the slits is ade-
quately described by the Kirchhoff boundary conditions
for thin absorbing screens.'2

Assumption (a) is equivalent to the assumption that the
wavelength distribution of the source is sufficient to de-
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Fig. 1. Notation for the multiple-plane interferometer problem.
The last arrow leads to any number of additional grating planes.
The spacing between any two consecutive planes is of the order of
L or greater.

scribe completely the quantum state of the resulting beam.
Thus we ignore internal degrees of freedom and quantum
coherence," which allows us to reduce the problem to
solving the Helmholtz equation,

(V2 + k2)k =, (1)

for the monochromatic quantum amplitude 4 )
k with the

Kirchhoff boundary conditions assumed in (b). From the
Schr6dinger equation, k 22r/A = (2mE/h2)12, where E is
the energy of a particle with wavelength A and k is the
wave number associated with that energy. Because of as-
sumption (a), the final intensity at the nth plane, I(xn), is
given by summing over the intensity produced by each
point source in the ensemble, i.e.,

I(x.) = _P(k)J4kk(xn)12, (2)
k

where P(k) is the momentum distribution of the source.
We now derive an expression for the monochromatic

amplitude 4) (dropping the k subscript). We compute the
amplitude by assuming its value and normal derivative at
one plane and then applying the Helmholtz equation to
find at a second plane located just before a diffracting
screen (e.g., slit or grating). We then multiply this by
the complex grating transmission function to obtain the
amplitude just after the grating plane as assumption (b)
dictates. This alternation of free-space propagation and
grating transmission is then applied sequentially to solve
the full multiple-plane problem. Given the amplitude and
its normal derivative on the initial plane, the value of 
anywhere else is given by the Kirchhoff integral formula,4

)(X2) X exp(ikR) 11i* [Vi + ik( + i )R ¢dxi,

(3)

where we have used the planes x and x2 from Fig. 1, n is
the normal to the plane x, and R = [Z2

+ (X2 - x1)2] /2.

Immediately we note that, in our interferometer (an ex-
periment with geometry that falls into the matter-wave
optics regime discussed in Section 1), R is larger than A by
a factor of -109, so that we can neglect the 1/kR term in
all further analysis. In addition, R itself changes by only
1 part in 10' over the maximum transverse width w, so
that the 1hR factor may be taken out of the integral. (We
do not neglect the change of R in phase, only in amplitude.)

At the xi plane, can be represented as the sum of the
amplitudes resulting from free-space propagation from a
set of point radiators located at x0; this is simply a state-
ment of Huygens's principle. Because the point sources
at x0 subtend an angle of no more than the largest geomet-
rical angle, 2w/L (L is the distance between the two
planes), the wave fronts at xi are parallel to the xl plane to
within this angle. Equivalently, the local propagation
vector of the resultant amplitude, Vo/ik, is parallel to ni
to within 2w/L, or ni Vie = iko4 to an accuracy of (w1L)'.
In our interferometer w/L never exceeds 10-3, so we com-
mit an error of no more than 10-5 by making this approxi-
mation. [Note that, as above, we make the cos(2w/L) 1
approximation only for the amplitude, not the phase.]
Thus the Kirchhoff integral can be written as

0(x2) 4(xi)exp{ik[L122 + (x 2 - xl)2] "}dxl, (4)
_0,

where L12 is the distance between the x and x2 planes.
Relation (4) is the expression for the amplitude of the two-
plane propagation problem in our chosen regime. Sequen-
tial application of the two-plane problem gives the final
amplitude for the interferometer.

We now discuss an analogy between relation (4) and a
result obtained for de Broglie waves in Feynman's formu-
lation of quantum mechanics by path integrals." The
relative amplitude in the Feynman picture is derived by
summing the propagator over all the paths. In the two-
plane problem we start with the given amplitude for a par-
ticle to arrive at the first plane, (x,). Given that the
propagator through free space is proportional to exp(ikR)
(we drop the 1/R factor as before), we integrate over all
the possible paths from the plane x and obtain a result
that is identical to relation (4). Neither the Helmholtz
nor the Feynman formulation leads exactly to relation (4),
but each has its advantages: the Helmholtz picture has
the advantage that it more rigorously yields relation (4);
the Feynman picture has the advantage that it more intu-
itively leads to the same result.

It is clear from the path-integral formulation that a
straightforward approach to solving relation (4) is to divide
each of the two planes into N transverse bins and sum the
contribution to the amplitude of each path from the first
plane at a point on the second plane. This procedure
takes O(N2 ) operations to specify the amplitude on the
second plane at all N points. In Section 3 we describe
how our model reduces the number of operations.

3. NUMERICAL MODEL
To simulate the multiple-plane interferometer, the ana-
lytic problem must be converted into one that can be accu-
rately and quickly computed numerically. This conversion
involves establishing a discrete representation, ensuring
that the finite resolution of the discrete representation is
sufficient to yield a model whose numerical errors are
minimal, providing an efficient algorithm to compute the
discrete representation of the two-plane propagation inte-
gral, relation (4), and finally creating a numerical model
of the source.

The discrete representation is realized as follows:
Each interferometer plane is represented by assigning to
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it a vector of N sample points containing the complex
transmission amplitude of the absorbing screen at that
plane. The discrete amplitude vector just after the
screen is the point-by-point product of the absorbing-
screen vector and the N vector representing the amplitude
just before the screen. The plane-to-plane propagation
problem is then treated by numerically evaluating the
propagation integral.

Converting to a discrete representation requires that
the discrete sample-point number be large enough to avoid
unacceptable numerical errors. The requirements on
point density are estimated by noting that the use of dis-
crete sample points introduces an artifactual fine period
grating into the problem. We wish to minimize the con-
tribution of the diffracted orders of this artifactual grat-
ing, and this requires fulfilling two criteria. The first
criterion depends on the wavelength A, the maximum
transverse width w, and the length L but is independent of
the geometry of the absorbing screen. The criterion is
that the angle corresponding to diffraction from the arti-
factual grating must be larger than the largest geometri-
cal angles in the problem:

AN N 2w2

>> 2- N >>
w L kL

(5)

In practice we always choose N at least three times this
limit, which is necessary for the next criterion. The sec-
ond criterion depends on the absorbing screen. If d is the
width of the smallest hole in the screen, we can estimate
the error committed in the amplitude of the wave trans-
mitted through this hole as the angular width of the dif-
fracted beam from the hole divided by the angular spacing
between the orders of the artifactual grating:

A w 1 werror - AN d (6)

Because wIN is the spacing of points in the artifactual
grating, the error is just the inverse of the number of points
in the hole. This error is the ratio of the maximum am-
plitude error to the maximum amplitude.

We now estimate the numerical errors for the model ap-
plied to our interferometer. The typical dimensions for
our interferometer are L =z 1.0 m, w 1000 jum, A 
0.02 nm, and d 0.1 /.&m, so that relation (5) can be satis-
fied by a factor of 10 with N = 106. With this N there are
-100 sample points per hole to give a relative amplitude
error of 1/100. As an initial test of the accuracy of the
model we doubled N and noted that the results did not
change in any obvious qualitative way. An additional test
was provided by a comparison with previously calculated
results for atomic diffraction from a single slit.'6 Our re-
sults agreed qualitatively in every detail on both a large
and a small scale with those of the previous research.

We note that N = 106 is an excessively large number of
sample points. We arrived at such a large number because
we chose to simulate a 1000-,um-wide grating. Our calcu-
lations were performed on a Cray-2, so that we were not
under any size constraints. For many purposes it is un-
necessary to use such a large width, and in such cases the
required sample size will decrease.

Given that the criteria on sample-point number and den-
sity can be fulfilled, we now introduce the fast computa-

tional algorithm for calculating the propagation integral.
To motivate the method of the algorithm, we write
the integral in relation (4) showing only functional
dependencies:

4) (x2) oc dx,4)(xl)f(x2 - XX
co

(7)

where f represents the propagation exponential. Rela-
tion (7) is a convolution.7 This is fortunate, because con-
volutions can be calculated with Fourier transforms by the
convolution theorem,'8 which, with fast-Fourier-transform
techniques, offers a great increase in computational speed
over conventional methods. Therefore the fast algorithm
converts the analytic problem into one that can be numeri-
cally calculated with convolutions.

Relation (7) does not convert directly into a discrete
convolution: the problem is complicated by the symmetry
of the functions. Relation (7) is represented discretely as

N-1
or= E

i=0

or

j N-1
ti = E %i-i + E 1if'-i 

i=O i=j+l
(8)

where V' is the discrete amplitude vector to be calculated
at the second plane, T is the initial amplitude vector at
the first plane, N is the number of sample points along a
grating plane, i labels the vector elements on the first
plane, and j labels the vector elements on the second
plane. We write the second form for ease of comparison
with later results, adopting the convention that summa-
tions that decrease have no elements.

The prime difficulty is that Eq. (8) is not a discrete con-
volution, because the symmetry of f prevents it from obey-
ing the requirement that f be periodic in N. In the
two-plane propagation problem, f satisfies the symmetry
relation frn = f-rn (from the simple fact that path lengths
depend only on the difference between i and j), but it is
not periodic in N since f-rn $ fN-rn. Despite this fact, the
problem can be solved with discrete convolutions.

We now show how to circumvent the symmetry diffi-
culty by embedding the vectors ', P and f in a convolution
of suitably defined vectors, j2N and f2N, which have twice
as many elements as their corresponding N vectors. The
key is to define f2N as

(9)A 2V = rf m E [0,N - 1]
f2N-m m ER [N + 1,2N -1]

so that the periodicity off2N generates the proper symme-
try for a 2N convolution: frN = f_

2
N (fN2N can be as

signed any value in this calculation.) We now embed 4I in
a vector T2N with twice the period by adding N zero
elements:

r2N = {'rnm

O

m E [0,N - 1]
m E [N,2N -1]

(10)

This yields the desired result: the convolution of the 2N
vectors contains the physical problem of Eq. (8). The con-
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Fig. 2. Schematic diagram of the ideal separated-beam three-grating interferometer. In the numerical model Lo, = 1.0 m and
L12 = L23 = 0.5 m; the gratings have a 0.2-Am grating period with equal bar and space widths; the source has a Gaussian 12% 1/e velocity
distribution centered at A = 0.02 nm; the detector is 25 ,m wide; w = 1000 tm; and the beam-collimating slits are each 20 Am wide (the
slit and grating in the xl plane are coincident in z). The interferometer paths shown are those that yield a maximum interference signal
and converge in front of the detector.

volution of T2N and f2N can be broken up as (we consider
only 0 ' j < N)

j N-1
(qf 2 N X f2N) = E 2Nf 2N + E W r-2N

i-O i-j+i
2N-1

+ E2 p 2Nf 2N (11)
i=N

By using the definition of p2N, it is seen that the last term
on the right-hand side of Eq. (11) is identically zero and
that the T2N in the first two terms can be replaced by 'I
Exploiting the periodicity of f2N and applying the above-
mentioned observations, we obtain

j N-1
(r2N ® f 2N)j = >2 1itf2N + 2 'itf-i+2N (12)

i=O i=j+i

so that, with the definition off2N, Eq. (12) is equivalent to
Eq. (8) for 0 j < N. Thus the parallel-plane diffraction
problem can be calculated with convolutions. For the next
two planes in the interferometer, we take the first N ele-
ments of T2N and define a new 2N amplitude by using
Eq. (10), use the f appropriate for propagation between
these two planes to define a new f2N according to Eq. (9),
and calculate the new two-plane problem. We continue in
this way until all the planes are traversed.

To complete the description of the numerical model we
now describe the numerical model of the source. An ex-
perimental source that obeys assumption (a) in Section 2
has two unrelated parameters: the location of each con-
stituent point source in space and the wavelength distri-
bution (velocity, for particles) or, equivalently, P(k). We
choose a method of representing the source whereby these
two parameters are included simultaneously in each nu-
merical source point. The source position is divided into
bins (in the x0 plane), and a point radiator is randomly
assigned to a position within each bin. Each point radia-
tor is then randomly assigned a unique wave number from
P(k) and given the appropriate weighting. In agreement
with assumption (a) in Section 2, the intensities kp(x.)I2

for each independent source point are added to obtain the
total intensity.

Combining the results of this section completes the
model of the interferometer. With the numerical criteria
satisfied, the n-plane interferometer calculation can be
computed quickly by combining n - 1 between-plane
Helmholtz propagation problems and solving each with
convolutions, using the method outlined above. The pro-
cedure is repeated for each source point. Three fast
Fourier transforms are used to perform the convolutions,
giving a dramatic reduction in computational time. For
an N-sample-point calculation of the two-plane problem,
the fast algorithm computes in 0(3 X 2N X log 2N) time,
whereas a brute-force calculation of the integral takes
O(N2 ) time, as discussed above. The fast algorithm time
increases linearly with the number of planes, whereas this
quantity is in the exponent for the straightforward brute-
force approach. With N = 106, the fast algorithm for a
two-plane problem takes 4 s on a Cray-2. While it is
unfair to compare the running time of the fast algorithm
with that of a brute-force calculation with this size N [we
would not use such a wide experiment that requires such a
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Fig. 3. Intensity distribution of the ideal three-grating interfer-
ometer at the incident side of the third grating plane, captured by
an ideal-point detector. The magnified region is the area in
which the experimental detection process takes place. There are
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large N if we were calculating in O(N2 ) time], the savings
in time is a factor of -104.

4. APPLICATION OF MODEL

We first applied the numerical model to an idealized ver-
sion of our experimental three-grating atom interferome-
ter, shown in Fig. 2. The spatial intensity distribution on
the incident side of the third grating, 10(x3)12, is shown in
Fig. 3. The dark areas of the graph are fine period fringes
that are due to the interference of two spatially distinct
paths; the magnified portion shows the fringes that are
unresolved on the larger scale. The suppression of every
fourth interferometer order seen in the graph is due to the
model's assumption of equal bar and space widths for the
gratings, which therefore have no amplitude in the even
orders. The calculation uses N 106.

We next used the numerical model to determine the ef-
fects on the overall intensity and fringe contrast in our
three-grating interferometer that resulted from changing
certain parameters of the model. First the model exam-
ined the depth of field of the interferometer by changing
the position of the third grating. In the ideal interferome-
ter the three gratings are separated by equal distances,
guaranteeing that the interferometer paths exactly recom-
bine at the plane of the third grating. If the third grating
is not in the correct position, the beam recombination will
not be exact, and interferometer signal contrast will de-
cline. [Contrast, or visibility, is defined in the standard
way as (Imax - Imin)/(Ima + Imin).] Figure 4, a plot of the
interference signal contrast versus a = 100(L 2 3/L1 2 - 1)
(see Fig. 2), shows that contrast declines with increased
misposition. For this application, a detection process
mimicking that of the experimental interferometer was
used. To detect the interference signal in the experimen-
tal interferometer, the spatial intensity pattern at the
final plane, 1k(x3)I 2, is masked by the third grating in a
moir6 detection scheme for various transverse positions of
the third grating. Because the interference signal has a
period equal to the grating period, the final intensity
through the third grating on the detector is a sinusoidal
function of the third grating position. From this sinu-
soidal signal the contrast values of Fig. 4 were calculated.
The simulation was run for two types of numerical source:
the first was a single monochromatic point source (to save
computational time), and the second was the multichro-
matic extended source described in Section 3. It is clear
from Fig. 4 that the proper characterization of the source
is important. From further tests it was determined that
the spatial extension of the source plays a much greater
role in reducing contrast in a misaligned interferometer
than does the 12% multichromicity.

Next we used the numerical model to examine the ef-
fects of changing the collimation slit widths. With narrow
slits the interferometer has distinctly separated paths.
However, when the slit sizes are increased, the beam
widths become large enough that there are no separated
paths. We applied the model to the case in which the col-
limation slits of our interferometer were 200 ,um for the
source slit and 80 ,um for the first grating slit and found
that there were still high-contrast fringes formed, as
shown in Fig. 5. With a moir6 detection scheme included,
the contrast is 0.18. In the wide slit mode the collimation
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Fig. 4. Interference signal contrast versus third-grating mispo-
sition (a) for three-grating interferometer with moir6 detection.
The dots are computed for an interferometer with a single mono-
chromatic point source; the crosses are computed with the full
extended multichromatic source. Positive misalignment is away
from the second grating; negative is toward. The solid fit is to
the monochromatic point source, and the dashed fit is to the
multichromatic extended source. Both are Lorentzian functions
and serve only to guide the eye; we attribute no analytic signifi-
cance to the form.
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Fig. 5. Same as Fig. 3 for wide collimating slits (source:
200 gm; first grating: 80 ,um). Note the good contrast in the
interference signal.

is insufficient to separate the paths in either position or
angle, and the interferometer can be well described by the
techniques of Fourier imaging. In this regime discussion
has been limited to certain planes because of the simplifi-
cation in the analytic treatment; however, this is clearly
not a necessary restriction for our numerical model.

5. CONCLUSIONS

We have developed a computationally efficient numerical
model of a multiple-grating interferometer that yields
high-resolution results. The results of the model proved
useful in making design choices for our interferometer.
For example, we were uncertain as to the required grating
spacing accuracy; the results described above prove that
an easily achievable accuracy of 1% is sufficient. We also
were unsure of the quality of fringes for our interferome-
ter with a multichromatic extended-source run in a mode
lacking separated beams. The model demonstrated that
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we may run wide, unseparated beams and still expect
good contrast. In addition, we used this model to predict
the performance of a cylindrical zone-plate lens that we
recently fabricated and tested.' 9

Because our model treats a general optical problem, it
is applicable to many other interference experiments.
Double-slit experiments, single-grating diffraction, and
focusing with zone plates are a few of the many experi-
ments to which our model may be applied. If the waves
obey the Helmholtz equation, the planes are parallel, and
the diffracting elements can be treated as simple trans-
mission or phase screens, the model is accurate. We have
presented the model in a regime that allows for convenient
simplifying approximations to the theory of the multiple-
grating interferometer. We have shown that these ap-
proximations are well justified in our atom interferometer
and that they lead to a computationally useful form for the
propagation integral. The model could be extended to in-
clude regimes in which the derivative cannot be neglected.
The resulting, more complex calculation would require
twice as many operations plus a derivative at each plane.
For separated-beam interferometers and many other
devices, dimensions are such that the analytic approxima-
tions that we employ to simplify the problem will often be
met, making the model a quick and a useful tool.
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