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Effectiveness of stratospheric solar-radiation
management as a function of climate sensitivity
Katharine L. Ricke1*†, Daniel J. Rowlands2, William J. Ingram2,3, David W. Keith4†

and M. Granger Morgan1

If implementation of proposals to engineer the climate through
solar-radiation management (SRM) ever occurs, it is likely
to be contingent on climate sensitivity. However, modelling
studies examining the effectiveness of SRM as a strategy
to offset anthropogenic climate change have used only
the standard parameterizations of atmosphere–ocean general
circulation models that yield climate sensitivities close to the
Coupled Model Intercomparison Project mean. Here, we use a
perturbed-physics ensemble modelling experiment to examine
how the response of the climate to SRM implemented in the
stratosphere (SRM-S) varies under different greenhouse-gas
climate sensitivities. When SRM-S is used to compensate for
rising atmospheric concentrations of greenhouse gases, its
effectiveness in stabilizing regional climates diminishes with
increasing climate sensitivity. However, the potential of SRM-S
to slow down unmitigated climate change, even regionally,
increases with climate sensitivity. On average, in variants of
the model with higher sensitivity, SRM-S reduces regional
rates of temperature change by more than 90% and rates of
precipitation change bymore than 50%.

The Royal Society has defined SRM as techniques that ‘attempt
to offset effects of increased greenhouse gas (GHG) concentrations
by causing the Earth to absorb less solar radiation’1. The most
plausible large-scale method is to increase the loading of light-
scattering aerosols in the stratosphere (SRM-S; ref. 1). A number of
atmosphere–ocean general circulationmodel (AOGCM)modelling
studies suggest that SRM can compensate for many of the tempera-
ture and precipitation changes associatedwith global warming, even
at the regional level2–4, though these regional compensatory effects
are not uniform4,5. These previous studies have used models in
which the climate’s equilibrium sensitivity to GHG forcing (hence-
forth, CS) reflects near-median estimates of CS. However, both
observationally constrained and expert-elicited estimates of CS have
a substantial ‘high tail’6,7, and it is arguablymore likely that if SRM is
deployed it will be becauseCS, and the impacts fromclimate change,
turn out to be higher than current best estimates. Here we examine
the effectiveness and side-effects of SRM-S across a range of CS to
check if use of themeanCS biases our understanding of SRM.

Evaluating the effectiveness of SRM-S requires first specifying
the conditions inwhich itmight be implemented and the effects that
would be desired. There are various scenarios under which SRM
might be employed. From a conventional policy viewpoint in which
SRM is one of a portfolio of strategies alongside mitigation and
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Figure 1 | Time series of temperature and precipitation of the no-SRM,
low-SRM and high-SRM scenarios examined, with initial-condition
subensembles averaged for each of the 43 PPE model configurations
analysed. a,b, Five-year running-mean global mean near-surface (1.5 m) air
temperature (a) and five-year running-mean global mean precipitation
rate (b), all shown over the length of the 80 model-year simulations.

adaptation, it could be used to minimize net social costs of climate
change8,9. Alternatively, SRM is often framed as disaster insurance
to be employed in case of the ‘extreme warming’ that would occur
under high CS (ref. 10) (and which may bring about ‘catastrophic’
changes such as rapid deterioration of the Greenland ice sheet or
large releases ofmethane from thawing permafrost11).
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Figure 2 | Example of regional responses to A1B and SRM-S forcings in
units of standard deviations (s.d.) for two model variants and two regions.
Region 1 is eastern North America; region 2 is Southern Europe/Northern
Africa. Blue-edged points show the no-SRM (black centre), low-SRM
(magenta centre) and high-SRM (green centre) responses for the
standard-physics model variant (1T2050= 2.1 ◦C). Orange-edged points
show corresponding responses for the ensemble’s highest-sensitivity
model variant (1T2050=4.1 ◦C). Temperature and precipitation anomalies
are the differences between ten-year averages centred on 2050 and 2000,
divided by the interannual variability of the control climate. Arrows indicate
the trajectory as SRM-S increases.

To investigate how SRM-S might be used to counterbalance
future GHG-induced climate change in model variants with
high CS that are also consistent with recent observed climate
change, we carry out a ‘perturbed-physics’ ensemble (PPE)
modelling experiment with the HadCM3L AOGCM (refs 12–14;
D.J. Rowlands et al., manuscript in preparation). Like other PPEs
(refs 15,16), we simulate past and future climate scenarios using a
wide range of model parameter combinations that both reproduce
past climate within a specified level of accuracy and simulate
future climates with a wide range of climate sensitivities. We chose
43 members (‘model variants’) from a subset of the 1,550 from
the British Broadcasting Corporation (BBC) climateprediction.net
(cpdn) project that have data that enable restarts (Methods,
Supplementary Methods and Fig. S1; ref. 12; D.J. Rowlands et al.,
manuscript in preparation).

Anthropogenic emissions were modelled using a mid-range
standard emissions scenario, SRES A1B (ref. 17). SRM-S is
simulated in the model by specifying a globally uniform aerosol
optical depth (AOD). The simulations run from 2000 to 2080 with
SRM-S forcings applied from 2005. A first cpdn experiment using
HadCM3L’s standard physical parameters (that is, the ‘standard-
physics’ model variant) to look at global and regional responses
to 135 different potential SRM-S scenarios3 showed that, even
regionally, changes to stratospheric AOD produce approximately
collinear temperature and precipitation responses. Using the
SRM-S scenarios that best stabilized global temperature in that
experiment, we analyse the effects of four SRM-S scenarios (no,
low, medium and high SRM) to simulate with the PPE. The low-,
medium- and high-SRM scenarios are designed to approximately
counteract rising radiative forcing from anthropogenic emissions
and stabilize global mean temperature within 1 ◦C relative to
the present day in all model variants (Methods, Supplementary
Methods and Fig. S2). The no-SRM scenario used a constant
stratospheric AOD corresponding to mean natural volcanic activity
in the recent past18.

Figure 1 shows five-year running-mean global-mean surface air
temperature and precipitation rates for each model variant for
the no-SRM, low-SRM and high-SRM scenarios. SRM cannot
simultaneously compensate for the impacts of rising GHGs on
both temperature and the hydrological cycle. Most of the effect of
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Figure 3 | Mean regional values of OD*, the amount of optical depth
modification that returns each regional climate closest to its baseline
state (the origin in Fig. 2), plotted against 2050 forecast warming of the
model variant for decadal means about 2030, 2050 and 2070. Points
show the mean-OD* for each model variant when equal weight has been
given to each of the 23 regions. Solid lines show best fits to these points.
Dashed and dotted lines show best fits to points (not shown) that result if
each geographic region is weighted by its economic output (dotted) or by
its population (dashed). The larger point is the standard physics model.

either SRMorGHGs onmean precipitation is through temperature,
but, if their effects on temperature are made to cancel, changes
in mean precipitation are driven by the direct effects of their
radiative forcings, both of which reduce precipitation (by reducing
surface radiative heating and reducing tropospheric radiative
cooling, respectively)19,20. Under the no-SRM scenario, global mean
temperature and precipitation increased with all model variants.
Although results vary, both high and low SRM yield relatively stable
temperatures after 2020 and show decreasing precipitation.

To analyse the regional impacts of different levels of SRM-S we
examinedmean temperature and precipitation anomalies over land
in 23 ‘Giorgi regions’21 (responses over the ocean are not shown but
exhibit similar trends). Results are presented for each PPE model
variant using the projected warming without SRM-S from 2000 to
2050 as the independent variable. The projected warming is corre-
lated with CS and the results of analyses presented in the following
sections are the same if CS is used as the independent variable.

As an example of how regional responses to GHG and SRM-S
forcings vary among model variants, Fig. 2 shows decadal-mean
temperature and precipitation changes between 2000 and 2050,
normalized by the ensemble-mean interannual variability of control
climates unperturbed by GHGs or SRM, for just two regions and
two model variants: the standard-physics variant (1T2050= 2.1 ◦C)
and the ensemble’s highest-warming variant (1T2050=4.1 ◦C).

With both model variants, region 1 gets warmer and wetter
under A1B, whereas region 2 gets warmer and drier. When SRM-S
is used, both regionsmove back towards their baseline climate states
in both model variants. In the standard-physics model variant,
with the right amount of SRM-S, each region could return almost
exactly to its 2000 baseline for both annual-average temperature and
precipitation, although the amount of forcing required is different
for the two regions. In the high-CS model variant, the closest each
region can return to its baseline climate state is approximately one
s.d. (These data points were selected for illustrative purposes, but
are reasonably representative. Not all low-sensitivitymodel variants
return region 1 and region 2 so close to the origin, and some
regions cannot be simultaneously returned to their baseline values
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Figure 4 | Regional rates of change plotted against 2050 forecast warming of the model variant. a–d, The mean of the absolute values of regional rate of
change (a,c) and s.d. of regional rates of change (b,d) for temperature (a,b) and precipitation (c,d), shown for both the medium-SRM (Methods) and
no-SRM scenarios for decadal intervals centred on 2030 (red), 2050 (black) and 2070 (blue), plotted against model forecast warming. In the case of
precipitation, points and best-fit lines for the no-SRM simulations are shaded more lightly to distinguish them from the medium-SRM simulations.

of temperature and precipitation even in the standard-physics
model variant. See Supplementary Figs S3 and S4.)

The ensemble design enables analysis of the relationship between
various regional measures of SRM-S efficacy and the overall global
warming or CS of the model variant. Regional SRM-S efficacy—
defined here as the fractional extent to which SRM-S can return
regional climates from the no-SRM case to the baseline—can be
expressed in both relative and absolute terms. These measures are
averaged for presentation using three different weightings: each
region is unweighted, each is weighted by its population or each is
weighted by its economic output22.

To assess the diversity of likely regional preferences for the
amount of SRM-S, we first consider OD*, the change in optical
depth that returns the region’s climate closest to its baseline (the
origin in Fig. 2) in terms of combined interannual s.d. values of
temperature and precipitation.We also consider regional anomalies
(the variability-normalized regional temperature, precipitation,
and combined temperature and precipitation changes) for variously
weighted mean-OD* and the ratio of regional anomalies at global-
mean-OD* to those associated with no SRM.

Analysing precipitation rather than, for example, soil moisture
to evaluate the effect of SRM-S on the hydrological cycle does not
seem to result in a systematic overestimation of its efficacy. For
example, as the amount of SRM-S increases, regional precipitation
anomalies associated with anthropogenic emissions are generally
‘overcorrected’ (SRM changing the sign of the anomaly when
compared with the no-SRM case) before runoff (precipitation
minus evaporation) anomalies are.

Precipitation and temperature changes, albeit very important,
are only two of the many variables likely to have climate-related
impacts. The potential for moderating effects such as sea-level rise
and ice-sheet melt (although more difficult to accurately model in
AOGCMs) will also be relevant to decisions by some parties about
whether to implement SRM-S. As such, our SRM efficacy metrics
are useful indicators of trade-offs that occur when attempting
to stabilize regional GHG-driven climate changes using SRM-S,
but are not definitive normative measures of regional impacts
or likely preferences. Because our simulations do not include
‘threshold’ effects such as collapse of the thermohaline overturning
or catastrophic release ofmethane, ourmetrics also cannotmeasure
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the ability of SRM-S to counteract the type of forcing feedback
that would occur if certain climate tipping points were surpassed23
before SRM-S implementation.

Ten-year mean values of various efficacy measures against
model variant temperature response for decades averaged around
2030, 2050 and 2070 are shown in Fig. 3 and in Supplementary
Figs S5 and S6. As GHG concentrations rise, more SRM-S is
required to compensate (Fig. 3). Mean regional preferences for the
amount of optical depthmodification (that is,mean-OD*) are fairly
insensitive to modelled CS regardless of weighting. This should
be expected physically, because a model variant more sensitive to
one radiative forcing is generally similarly sensitive to the other
radiative forcing and SRM-S is used to cancel roughly the same
amount of forcing regardless of the modelled CS. Results are
similar using median-OD* rather than mean. Trends for seasonal
data are similar, though the economic-output-weighted slopes do
change noticeably because economic output is concentrated in the
Northern Hemisphere (not shown).

The s.d. of regional preferences for OD* (Supplementary Fig. S7)
decreases with modelled temperature response. This should also
be expected physically, as the smaller variation in the strength of
SRM-Swould havemore impact if climate sensitivitywere higher.

However, the mean and s.d. of regional anomalies at mean-OD*
increase with modelled warming (Supplementary Fig. S5), again
regardless of weighting. On average across the ensemble, at OD*
these SRM-modified climates are slightly warmer and drier than
their baseline climates, as is physically expected20,21. The higher
regional anomalies are driven by amplified regional drying in
high-CS worlds; there is no statistically significant relationship
between modelled warming and the magnitude of regional
temperature anomalies with SRM-S set at mean-OD*. As a proxy
for regional impacts with SRM, the higher mean anomalies imply
that SRM-S is less effective overall as a substitute for mitigation
in higher-sensitivity worlds—precisely when SRM-S seems most
likely to be deployed. Higher s.d. values of regional anomalies
in higher-CS model variants also suggest that interregional
heterogeneities associated with an SRM-S substitution would be
greater in higher-sensitivity worlds.

Conversely, the mean and the s.d. of the ratio of regional
anomalies at mean-OD* to anomalies with no SRM-S decrease with
modelled CS and decrease over the length of the simulations (Sup-
plementary Fig. S6). By thesemeasures, SRM-S ismore effective and
equitable at reducing the risk fromclimate changewhenCS is high.

From some impacts perspectives, rates of regional climate
change matter more than absolute anomalies24,25. On average,
without SRM-S, regional rates of warming and precipitation
change are more than twice as high in the ensemble’s highest-
sensitivity model variants as in the lowest-sensitivity model variants
(and are similar in magnitude to the regional rates of change
simulated by the same variant between 1996 and 2005). With
SRM-S applied, the rates of temperature change are insensitive
to the modelled CS (Fig. 4a). Rates of precipitation change are
marginally (but statistically significantly) higher in higher-CS
model variants (Fig. 4c), but on average SRM-S reduces regional
rates of temperature change by more than 90% and rates of
precipitation change by more than 50% in the highest-CS model
variants (forecast warming greater than 3.5 ◦C). The ability of SRM-
S to reduce rates of change in the face of high CS does not depend
strongly on the interregional weighting scheme, implying that,
although divisions between Giorgi regions are socioeconomically
meaningless, the average responses of the regions are still
meaningful. The amount of reduction does not depend on the
decade either, implying that the effectiveness of SRM-S in reducing
change is roughly independent of when it is implemented.

Given the regional heterogeneity of SRM-S effectiveness and
the fact that it will only moderate, never eliminate, regional

climate changes, it is unlikely that all regions would find their
local outcomes comparably satisfactory, and many regions may
find the result increasingly unsatisfactory over time. Conceivably,
some regions will prefer their new climates to those of 2000. In
addition, there are other risks (such as potential for stratospheric
ozone depletion26,27) and imperfections (such as a failure to
address ocean acidification28) associated with SRM-S, which
may also vary with CS.

We have explored how much existing assessments of SRM-S, by
using standard GCMs with near-median CS, may ignore important
contingencies. As noted above, a major motivation for studying
SRM is to evaluate its potential effectiveness as insurance against
higher-than-expected sensitivity of climate to radiative forcing due
to GHGs.We find that SRM-S is least effective in returning regional
climates to their baseline states and minimizing regional rates of
precipitation change under precisely such high-CS conditions. On
the other hand, given the very high regional temperature anomalies
associated with rising GHG concentrations under high CS, this is
also where SRM-S is most powerful in reducing change relative to
the no SRM-S alternative.

Methods
Ensemble design. The standard versions of AOGCMs have generally benefited
from considerable tuning: the set of values of model parameters has been developed
to give physically based realistic simulations. A PPE deliberately ‘detunes’ the
model, setting parameters to any physically plausible value, to explore uncertainty
space. Many of the original 1,550 cpdn model variants thus provide a poor
simulation of recent observed climate change. We aim to use only model variants
that provide a credible simulation of the past 50 years while maintaining a large
diversity in the response in 2050. A number of the choices we made in the design
are for pragmatic reasons rather than being based on a formal sampling algorithm,
because we do not seek to interpret the distribution of model variants in the
new ensemble in any probabilistic terms. Several factors were considered in
selecting model variant runs.

First, we held constant the future solar-forcing scenario29, and the future
anthropogenic sulphate emission trajectory. To avoid discontinuities in the solar
forcing in the year 2000 we only consider simulations with a solar forcing very close
to the chosen scenario in 2000. Second, we only usedmodel variants with a relatively
stable base climate. We eliminated model variants in which the initial-condition
ensemble average of the control simulations exhibited a drift greater than
0.5K century−1 fitted over 1960–2080. Finally, we selected model variants through
a comparison of themodelled and observed spatio-temporal pattern of temperature
change over the past 50 years (SupplementaryMethods).

Supplementary Fig. S1 plots the goodness of fit between models and
observations against simulated warming in 2050 with our 43-member PPE
ensemble. The colour code for these points indicates the model’s calculated
equilibrium climate sensitivity from corresponding equilibrium slab ocean
simulations, which is correlatedwith transientwarming (SupplementaryMethods).

To select a subset of the models for inclusion in the new ensemble that
ensured a wide range of responses in the future, models were binned by projected
warming in 2050 into ten equally spaced bins spanning the range of responses.
In each bin, the model variant with the lowest r2 was automatically included,
along with four others sampled probabilistically (Supplementary Methods),
avoiding duplicates. In the two highest-response bins there were fewer than five
model variants that met the selection criteria, and hence our selection yielded
only 43 model variants.

A ten-member initial-condition ensemble was generated for each
model variant (Supplementary Methods). For our analysis, the 430-member
ensemble was run for each of the four SRM-S scenarios, giving a total of 1,720
model simulations.

SRM forcings. SRM-S activities were simulated by specifying globally uniform
variations in stratospheric optical depth. This is distributed in the vertical
proportional to the mass of air in each stratospheric level in each level above
the tropopause, which is diagnosed for each point and timestep using a
lapse-rate-based criterion30.

A baseline SRM-S scenario (medium SRM) was formulated using the
results from the standard-physics experiment3 in which 135 SRM-S scenarios
were formulated, designed to offset the net forcings associated with long-lived
GHGs, tropospheric sulphur aerosols and tropospheric ozone; and spanning the
uncertainties associated with these anthropogenic forcings. The two scenarios
that best stabilized global surface air temperature in that experiment according to
a least-squares fit analysis were averaged. In the no-SRM scenario, stratospheric
AOD was set to 0.01 (at 0.55 µm, the reference wavelength30), a level approximately
equal to mean volcanic activity in the recent past18, over the entire length of
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the simulations. The high-SRM-S and low-SRM-S scenarios are the same as the
baseline SRM-S scenario except for the addition (0.075) or subtraction (0.015) of a
constant amount of optical depth at all points in the simulations (Supplementary
Fig. S2 and Methods).

Statistical analysis. For each of the 43 model variants we average output over a
ten-member initial condition ensemble to improve the signal-to-noise ratio. All
best fits shown were fitted using least-squares regression. (See Supplementary
Table S1 for all regression coefficients and corresponding p-values.) The latter
are calculated using standard assumptions including Gaussian noise, which may
be misleading, particularly in the far tails. We therefore do not specify p values
beyond two decimal places.

Regional population and economic weightings. Population and economic output
data for the year 2005 were obtained from the Nordhaus G-Econ dataset, which
contains gross output and population at a 1◦×1◦ resolution, and mapped onto the
22 ‘Giorgi regions’, plus New Zealand22.
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