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Abstract If solar radiation management (SRM) were

ever implemented, feedback of the observed climate state

might be used to adjust the radiative forcing of SRM in

order to compensate for uncertainty in either the forcing or

the climate response. Feedback might also compensate for

unexpected changes in the system, e.g. a nonlinear change

in climate sensitivity. However, in addition to the intended

response to greenhouse-gas induced changes, the use of

feedback would also result in a geoengineering response

to natural climate variability. We use a box-diffusion

dynamic model of the climate system to understand how

changing the properties of the feedback control affect the

emergent dynamics of this coupled human–climate system,

and evaluate these predictions using the HadCM3L general

circulation model. In particular, some amplification of

natural variability is unavoidable; any time delay (e.g., to

average out natural variability, or due to decision-making)

exacerbates this amplification, with oscillatory behavior

possible if there is a desire for rapid correction (high

feedback gain). This is a challenge for policy as a delayed

response is needed for decision making. Conversely, the

need for feedback to compensate for uncertainty, combined

with a desire to avoid excessive amplification of natural

variability, results in a limit on how rapidly SRM could

respond to changes in the observed state of the climate

system.

Keywords Geoengineering �Solar radiation management �
Dynamics � Feedback � Control

1 Introduction

Solar radiation management (SRM) has been suggested as

a possible tool to offset some or all of the radiative forcing

due to anthropogenic greenhouse gases (GHG) and thus

reduce the risks of associated climatic changes (Keith

2000). A negative radiative forcing could be introduced,

for example, using stratospheric aerosols (Crutzen 2006) or

marine cloud brightening (Latham 1990).

A common objection to geoengineering is that we do not

understand the climate system well enough to contemplate

meddling with it. For example, Prinn asks: ‘‘How can you

engineer a system whose behaviour you don’t under-

stand?’’1 We agree that ignorance about the climate system

is a good reason for caution about both geoengineering and

continued emissions of carbon dioxide. It is not true,

however, that we cannot control a system we don’t

understand. Feedback enables us to control systems that we

only partially understand and imperfectly measure. From

heart pacemakers to aircraft, feedback is routinely used in
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spite of imperfect models. Control theory provides tools to

guide the development of such control systems. Here we

apply control theory to the challenge of using solar goen-

gineering to limit climate change despite ignorance about

the climate system.

If there were no uncertainty in either the radiative

forcing or the climate response to this forcing, the desired

level of solar reduction could be determined without any

observations of the climate state. However, there will

always be uncertainty in the radiative forcing due to GHG,

the radiative forcing resulting from the application of SRM,

and in the different (and possibly nonlinear) climate

responses to each of these. As a result, predetermining the

required amount of solar reduction based on a model will

not, in general, result in the desired outcome. Instead, the

SRM forcing could be adjusted to compensate for these

uncertainties, e.g., in response to the difference between

the observed and some target climate state. This introduces

a new, intentional anthropogenic feedback process into the

climate system, creating a coupled human–climate system

with new dynamics (as in Jarvis et al. 2009). Indeed, even

if this feedback wasn’t explicitly planned as part of the

implementation strategy, a prolonged deviation from any

agreed upon target climate state could lead to a desire to

adjust the amount of solar reduction. We avoid here any

discussion of what governance process might be required to

determine a target climate state, and focus only on the

technical question of how to maintain such a desired target

in the presence of uncertainty. While feedback of other

climate variables might also be used, we focus here on

managing the global mean temperature. Both the approach

and the issues raised are generally applicable.

This use of feedback for control has been proposed in

Jarvis and Leedal (2012) as a modeling aid in geoengi-

neering simulations; Jarvis and Leedal (2012) also intro-

duce the idea that feedback would be useful in SRM

implementation to manage the associated deep uncertain-

ties. Here we use simulations to illustrate the role that

feedback might play in SRM implementation, and describe

the effects of feedback as a function of control parameters.

We consider a standard ‘‘Proportional-Integral’’ (PI) con-

trol algorithm where the amount of solar reduction depends

on both the difference between the actual and desired

global mean temperature and the integral of this error over

time; the latter term ensures that the desired temperature is

maintained in steady state despite uncertainty (shown

below in Sect. 3). In addition to exploring how the

dynamic behaviour depends on these proportional and

integral control actions (determined by their respective

gains), we also consider the effect of time delay. For

example, a plausible strategy might be to average the cli-

mate observations over the previous N years to adjust the

strength of solar geoengineering. In addition to filtering

(smoothing) the observations, this averaging introduces

time delay between the observation and the feedback

response; any additional time required for decision making

would result in further time delay.

A fundamental result from control theory involves the

‘‘waterbed effect’’, where improving the ability of the

feedback-control to compensate for variation in one fre-

quency range (e.g., to maintain a target temperature despite

time-varying GHG forcing) will always result in an

increased response to any disturbance or variability at other

frequencies. This trade-off is evident here in the amplifi-

cation of natural variability. In addition to the desired

ability to maintain some target despite uncertainty in either

the forcing or the response, (1) any intentional feedback

will necessarily respond to natural climate variability in

addition to the time-varying GHG forcing; not only will

this feedback suppress natural variability at low frequen-

cies, but it will amplify the variability at some higher

frequencies, and (2) any time delay increases this ampli-

fication for given feedback gains (and hence response

time), or conversely limits the magnitude of the feedback

gains that is allowable while still avoiding excessive

amplification or even instability, described in Sect. 4

below. There is thus competition between the objective of

steering the climate to the desired target state, and that of

avoiding a spurious response to natural climate variability.

The basic concept behind the waterbed limitations is

straightforward. The feedback needs to ‘‘push’’ the system

in the desired direction, but there is a time lag between

applying a radiative forcing and the resulting climate

response. As a result, there is always some frequency for

which the feedback response to a perturbation will be out-

of-phase with the intended response—because a time delay

means a frequency-dependent phase shift. This results in

the feedback amplifying natural variability at that fre-

quency, with the potential for oscillatory behaviour. The

extent of amplification depends on how strongly the feed-

back responds to any deviation between observed and

desired climate states, it also depends on both how strongly

and how quickly the climate responds to the imposed

radiative forcing.2 The same limitations apply if the phase

lag is due to the thermal inertia of the climate system itself,

or whatever time delay and lags are introduced through

decision-making or from the temporal averaging of

observations.

A static analysis would only predict the steady-state

behaviour, and would not capture these dynamic (time-

2 The same oscillatory behavior can be observed if one impatiently

adjusts the knobs in an unfamiliar shower: if there is time delay, then

a large response to water that is either too cold or too hot will result in

overcompensation before the system has responded to the current

settings. In aircraft, this phenomenon is referred to as ‘‘Pilot-induced

oscillation’’ (PIO).
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dependent) effects. Analysis thus requires a dynamic model

that describes the transient climate response to time-vary-

ing forcing. Here we use a box-diffusion model (e.g.

Lebedoff 1988; Morantine and Watts 1990) to predict the

global mean temperature behavior as a function of feed-

back parameters. Simulations using the HadCM3L fully-

coupled AOGCM (Jones 2003) are then used to evaluate

whether the results derived using this simple model are

sufficient to understand and predict the dynamic behavior

resulting from implementing feedback-control of the global

mean temperature in a meaningfully complex regime. Note

that an accurate model of the climate system is not required

for feedback to be effective at regulating the desired

variable.

Our HadCM3L simulations involve a simple scenario of

initiating SRM in year 2040 with the goal of returning the

global mean temperature to 2020 levels. This is sufficient

to illustrate both the ability for feedback-control to

achieve the desired goal under uncertainty and the inherent

trade-off between this objective and the effects on natural

variability. However, a more realistic implementation

scenario for SRM might begin with a small amplitude

testing phase (as in MacMynowski et al. 2011a) followed

by a more gradual ramp-up of forcing that allows for the

evaluation of unintended consequences. Testing might

help improve the best guess of the required SRM radiative

forcing, leading to smaller errors that would require

feedback compensation.

The dynamic model used for design is discussed in

Sect. 2. Section 3 introduces the necessary analysis tools to

explore the effects described above as a function of feed-

back parameters. The predicted behaviour using PI control

is illustrated in Sect. 4 using the box-diffusion model. The

predictions are evaluated in a more complex regime using

HadCM3L simulations in Sect. 5, including an evaluation

of regional temperature and precipitation changes, and a

brief illustration of managing other variables.

2 Box-diffusion model

Computing the transient response of a linear system to a

time-varying input requires a convolution integral in the

time domain, but involves only multiplication in the fre-

quency domain; equivalently, the Laplace transform con-

verts a differential equation to an algebraic one; compare

Eq. (3) to Eqs. (1–2) below. This property is particularly

useful in understanding coupled (linear) systems, so the

analysis of feedback here is most straightforward in the

frequency-domain. A semi-infinite diffusion model was

shown in MacMynowski et al. (2011b) to fit the frequency-

dependent response of the global mean temperature in

HadCM3L over a wide range of frequencies; this model

also fits the transient response of most of the CMIP5

models (Caldeira and Myhrvold 2013).

Here we include a surface layer of fixed heat capacity

C to better predict the response at short time-scales. For a

radiative forcing F(t), the surface temperature T(t) and

deep ocean temperature Td(z, t) satisfy

C
dT

dt
¼ F � kT þ b

oTd

oz

�
�
�
�
z¼0

ð1Þ

oTd

ot
¼ j

o2Td

oz2
; ð2Þ

with boundary condition Td(0, t) = T(0, t) (taking the top

of the deep ocean as z = 0). Here k describes the natural

climate feedback (the change in radiation due to a change

in surface temperature), C = cqH is the surface layer heat

capacity per unit area, j the thermal diffusivity, and

b = cqj for density q and specific heat capacity c.

This box-diffusion model can be solved using the

Laplace transform (as in Lebedoff 1988, Morantine and

Watts 1990, see also Appendix 1) to describe the temper-

ature anomaly T(s) resulting from a radiative forcing per-

turbation F(s) by the relationship T(s) = G(s)F(s), where

s = ix is the Laplace variable, with i ¼
ffiffiffiffiffiffiffi

�1
p

, and x the

angular frequency. (We do not distinguish here between

variables in the time-domain and in the frequency-domain

except by the argument T(t) or T(s) if it is not otherwise

clear from context.) This gives

GðsÞ ¼ TðsÞ
FðsÞ ¼

1

kþ bðs=jÞ1=2 þ Cs
ð3Þ

G(s) is the ratio of the Laplace transform of the response

variable T(s) to the input F(s), and is referred to as the

transfer function between them (e.g. Åström and Murray

2008; Li and Jarvis 2009; MacMynowski and Tziperman

2010). Note that G(s) is simply a complex number for any

x, with G(0) describing the steady state temperature

response to a step change in radiative forcing, in this case

1/k. The magnitude |G(s)| gives the response magnitude at

each frequency, and the phase of G(s) gives the phase shift

between input (radiative forcing) and output (temperature).

Equation (3) is compared with the calculated frequency

response from HadCM3L in Fig. 1; the latter was com-

puted by introducing 1 % sinusoidal variations in solar

forcing into the model (MacMynowski et al. 2011b). The

efficacy of radiative forcing due to solar reductions is less

than that due to CO2 (Hansen et al. 2005); in this model,

the radiative forcing from 2 9 CO2 (3.7 W m-2; IPCC

2007) is offset by a 2.3 % reduction in solar constant

(MacMartin et al. 2013). Using this factor to convert the

solar reduction into radiative forcing, then the best fit to

the calculated frequency response yields k = 1.2 W

m-2 K-1, s = b2/(k2j) = 13 years, and C = 3.2 9 106 J
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m-2 K-1. Note that the heat capacity C is only the value

needed to correct the high-frequency behaviour of the

diffusion model and is not intended to represent the heat

capacity of the ocean mixed layer; most of the mixed layer

contribution is already captured in the estimated parame-

ters of the diffusion model (Watterson 2000). As noted, the

transient behaviour of most CMIP5 models is consistent

with a semi-infinite diffusion model (i.e., C = 0), indicat-

ing that the mixed layer in these models does not behave as

a single heat capacity with a single distinct time constant

(Caldeira and Myhrvold 2013). There are several models

that are exceptions to this behaviour (e.g., Held et al.

2010). Increasing the heat capacity C would increase the

phase lag at high frequencies in Fig. 1 and would affect the

choice of feedback gains in what follows, but not the

general conclusions. While this simple model is tuned to

match HadCM3L, we note in Sec. 4 the effect that model

mismatch would have.

Natural climate variability d(s) in the global mean

temperature can also be included, so that T(s) =

G(s)F(s) ? d(s). The power spectrum of natural climate

variability is approximately 1/f for frequency f (Fraedrich

et al. 2004). The frequency-dependent amplitude spectrum

of d(s) is thus similar to the frequency-dependence of

Eq. (3) as noted in MacMynowski et al. (2011b). For

illustrative purposes herein, a sufficiently good model

of the natural climate variability is thus to choose

d(s) = G(s)w(s), where w(s) is an uncertain radiative

forcing that is approximately white noise on the time-scales

of interest here (annual to multi-decadal). The power

spectral density of w(s) can be chosen so that the resulting

spectrum of d(s) approximately matches that of the natural

variability (see Fig. 7). Only the spectrum of natural vari-

ability matters here, and not whether this is a realistic

description of the mechanism of natural variability.

Time-domain calculations with this model are given in

Appendix 1.

3 Feedback overview

A block diagram illustrating the coupled human–climate

feedback system is shown in Fig. 2. The dynamic system

characterized by the transfer function G(s) describes how

the global mean temperature (or more generally, the vari-

able(s) being controlled) responds to imposed radiative

forcing F, including the radiative forcing associated with

anthropogenic climate change Fd, the intentional solar

geoengineering component Fs, and the perturbations

w responsible for natural variability. The solar geoengi-

neering forcing might in general include a best estimate F̂

of the radiative forcing required to maintain T = Tref in the

presence of Fd, as well as the component Fc that corrects

for errors in this estimate based on feedback of the

observed climate state. The dynamic system K(s) describes

how the forcing Fc is adjusted in response to observed

changes; this is the added feedback-control correction.

With no feedback (K(s) = 0), the temperature is

obtained from the inverse Laplace transform of TðsÞ ¼
GðsÞðFdðsÞ þ F̂ðsÞ þ wðsÞÞ. If the dynamics G(s) and the

radiative forcing Fd(s) are known, then F̂ðsÞ can be chosen

so that T only differs from Tref by natural variability,

although implementing this would also require certainty in

the efficacy of solar geoengineering. Given uncertainty,

then using the best estimate of F̂ will yield some error that

could be corrected with feedback; we define Fr ¼ Fd þ F̂ as

the residual radiative forcing due to imperfect estimation of

the ‘‘feedforward’’ term F̂; this is the component that we

introduce feedback to compensate for. We focus here on the

design and effects of the feedback and do not explicitly

consider F̂ in our simulations; the simulations are thus

representative of the feedback action required to correct Fr

rather than Fd. A more accurate estimate F̂ would lead to

smaller requirements on the feedback to correct the residual

errors, and a correspondingly smaller change in the char-

acteristics of natural variability.

With feedback, the response is obtained from Fig. 2 by

solving the following two equations, which are algebraic in

the frequency domain:
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Fig. 1 Frequency response G(s) of global mean temperature in

response to 1 % perturbations in solar forcing calculated for

HadCM3L (from MacMynowski et al. 2011b), and least-squares fit

to a box-diffusion model. The direct calculation involved simulations

with sinusoidal variations in solar forcing, and computing the

amplitude and phase of the global mean temperature relative to the

forcing at each frequency. Parameters of the best fit to this data are

given in the text
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T ¼ GðsÞðFd þ F̂ þ Fc þ wÞ ð4Þ
Fc ¼ �KðsÞðT � TrefÞ ð5Þ

This gives the temperature error Te relative to the desired

temperature (Te = T - Tref), in terms of the residual

radiative forcing Fr as

Te ¼
GðsÞ

1þ GðsÞKðsÞ ðFr þ wÞ ¼ GfbðsÞðFr þ wÞ ð6Þ

Note that this is identical to what one would derive stati-

cally (Hansen et al. 1984; Roe and Baker 2007), but here

G(s) and K(s) represent the dynamics, so that this can be

used to solve for the transient as well as the steady-state

behaviour. Furthermore, K(s) is chosen and represents a

human feedback system (see below) as opposed to being a

property of the climate system.

Now consider the effect of feedback K(s). First, note that

if the feedback is chosen proportional to the temperature

error, Fc = kpTe or K(s) = kp, then from (3),

GfbðsÞ ¼
1

ðkþ kpÞ þ bðs=jÞ1=2 þ Cs
ð7Þ

Since 1/k is the equilibrium climate response without

feedback, proportional feedback can be understood as

simply reducing the climate sensitivity, i.e., reducing the

equilibrium climate temperature response to an increase in

GHG radiative forcing Fd. However, there will still be some

steady-state temperature error for F̂ 6¼ Fd. One way to see

this is to note that maintaining non-zero Fc in this case

requires non-zero Te = Fc/kp, that is, with only proportional

feedback, forcing is only applied if there is an error.

Next, consider also including a term proportional to the

integral of the error since the feedback was initiated; the

reason for including this will be clear shortly. This inte-

gral term results in a feedback response to any persistent

error:

FcðtÞ ¼ kpTeðtÞ þ ki

Z t

t0

TeðsÞds ð8Þ

(In our simulations, we implement this feedback with

decisions at discrete time intervals,

FcðnÞ ¼ kpTeðnÞ þ ki

Xn

j¼0

TeðjÞ ð9Þ

with calculations given in Appendix 2, but we present the

analysis here in continuous-time for simplicity.) Taking the

Laplace transform of (8) yields

KðsÞ ¼ kp þ ki=s ð10Þ

Substitution into (6) then gives

GfbðsÞ ¼
s

ki þ sðkþ kp þ bðs=jÞ1=2 þ CsÞ
ð11Þ

Recalling that Gfb(0) is the equilibrium climate response,

integral feedback results in zero error in steady state

(Gfb(0) = 0) provided that the resulting system is sta-

ble. It is still useful to include some amount of pro-

portional control in addition to integral control, as

described in the next section. In general, a proportional-

integral-derivative (PID) structure could be useful, how-

ever the derivative term is unnecessary here as will be

discussed below.

The ratio of the response Gfb(s) with feedback to the

response Te = G(s)(Fr ? w) without feedback is defined as

the sensitivity function:

Fig. 2 Block diagram of geoengineering feedback, assuming for

simplicity that radiative forcing from SRM (Fs) and from other

sources (Fd) simply add. The radiative forcing ‘‘noise’’ w can be

included to simulate natural climate variability. The climate system is

represented by the transfer function G(s), generating temperature

anomaly T in response to radiative forcing. The system K(s) computes

the feedback in response to the deviation between observed and

desired temperature. Also included is a ‘‘feedforward’’ of the best

estimate of the SRM radiative forcing F̂ required to maintain T = Tref

in the presence of the disturbance Fd
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SðsÞ ¼ GfbðsÞ
GðsÞ ¼

1

1þ GðsÞKðsÞ ð12Þ

(This terminology, from engineering, is not to be confused

with the ‘‘climate sensitivity’’ used to mean the equilibrium

response to 2 9 CO2). If the product G(s)K(s) is small at

some frequency, then the sensitivity function will be close

to unity (feedback has no effect), while if |G(s)K(s)| is

large, then the sensitivity will be small (feedback has a

significant effect). If at some frequency the magnitude

|S(s)| [ 1, then the feedback amplifies the climate response

that would have been present without feedback at that

frequency. A key result from control theory (e.g., Theorem

11.1 in Åström and Murray 2008) is that for any real

system (as opposed to idealized cases with the ability to

instantaneously respond to observed changes), there will

always be some frequency region where |S(ix)| [ 1

(amplification). Furthermore, it can be shown that

Z1

0

log jSðixÞjdx ¼ 0 ð13Þ

This describes a ‘‘waterbed effect’’: attenuation in some

frequency band must result in amplification in some other

frequency band (see Fig. 5; the area corresponding to

amplification is at least as large as that corresponding to

attenuation.)

Compensating for uncertainty or changes in anthropo-

genic climate change can be equivalently stated as atten-

uating the effects of radiative forcing. That is, at low

frequencies, we need |S| \ 1 to have smaller temperature

error Te than there was without the use of feedback; see

Eq. (6). A more rapid response to differences between

desired and actual temperature corresponds to a larger

frequency range over which there is attenuation. However,

the feedback acts equally on both the anthropogenic radi-

ative forcing for which it is intended to compensate, and on

the source of natural climate variability; also in Eq. (6).

Thus Eq. (13) describes a fundamental trade-off between

(1) how rapidly the feedback can react to any change in

radiative forcing, the climate response to forcing, or goals

(described by the frequency range over which there is

attenuation, so log|S| \ 0), and (2) how much amplification

there must be of natural variability in some higher-fre-

quency range (i.e., log|S| [ 0). This is true for any feed-

back law; next, we describe this more concretely for

proportional-integral (PI) control.

This constraint holds for feedback of any variable. If

solar geoengineering were adjusted to maintain some other

variable, then in general G(s) would differ, and thus the

appropriate choice of K(s) would differ, but the trade-off

would remain; see Sect. 5.

4 Dependence on feedback parameters

The Proportional-Integral (PI) control law is given in

Eq. (8). More complicated controllers are possible; e.g.,

Jarvis and Leedal (2012) also include learning the uncer-

tain system dynamics from the observed response in order

to choose a better feedforward F̂; this gradually improved

estimate reduces the requirements on feedback to correct

for errors. However, the most important effects of using

feedback can be illustrated using PI control.

In addition to considering how the dynamic behaviour

(the response time and the effect on natural variability)

depend on the feedback gains kp and ki, we also consider

the effect of time delay. Time delay might result from the

time required to reach a decision on altering the radiative

forcing of solar geoengineering, or from averaging the

climate response over time with the intent of minimizing

the response to natural climate variability. For example, a

decision to adjust the SRM forcing level could be made

every N years, based on the average global mean temper-

ature over the previous N years. This means that by the

time a decision is made, the information used is on average

N/2 years old, and on average, the last decision was made

N/2 years ago, leading to a delay of N years. The Laplace

transform of a pure time delay of N years is e-Ns, which

has unit magnitude but introduces phase lag of xN radians

at angular frequency x = 2p f. The N-year averaging does

not have the same effect on the behaviour as a pure time

delay would; the corresponding Laplace transform is given

in Appendix 2. However the effects are similar, so the

phase lag of a time delay can be used to understand the

effect of the averaging, and also, the averaging is repre-

sentative of the effects that would arise due to time delays

from decision-making or in implementation.

First, note that the magnitude of the sensitivity function

|S(s)| in Eq. (12) is the inverse of the distance between the

product G(s)K(s) and the point -1. The product G(s)K(s) is

plotted in Figs. 3 and 4 for the ‘‘high gain’’ case in Table 1.

The shaded region in Fig. 3 corresponds to |S(s)| C 1, that

is, to amplification of natural variability.

From Fig. 3, introducing time delay shifts the curves

clockwise (greater phase of the complex number GK). For a

constant choice of feedback gains, this increases the range

of frequencies over which the feedback amplifies variabil-

ity, increases the maximum amplification, and for a suffi-

ciently large delay, will result in instability. This

amplification is evident in Fig. 5, where the sensitivity

function S(ix) is plotted as a function of frequency, both for

the ‘‘high gain’’ cases in Fig. 3 and the ‘‘low gain’’ cases in

Table 1. Reducing feedback gains reduces the peak ampli-

fication, but results in slower response time to any changes.
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Figure 6 shows the corresponding response in the time

domain. The high gain case with N = 2 results in sub-

stantial overshoot in response to any sudden change, fol-

lowed by a damped oscillation. In steady-state conditions,

the peak at a 6–7 years period in Fig. 5 results in signifi-

cant amplification of natural variability, evident in Fig. 6b.

The corresponding power spectra of variability with and

without feedback are shown in Fig. 7 from a 1,000 year

time simulation; the ratio of these indeed matches the

predicted sensitivity function.

From Fig. 6a, higher gain results in more rapid correc-

tion of errors between the actual and desired climate state;

this implies a faster feedback response to any changes in

anthropogenic radiative forcing, any nonlinear change in

the climate response to this forcing, or any change in

desired target (e.g., if the current target is deemed to be

insufficient for some reason). However, from Figs. 6b, or 5,

higher gain also results in higher amplification of natural

variability. These trade-offs are shown as a function of

integral (ki) and proportional (kp) gains in Fig. 8, for two

different choices of averaging time N.

The calculations required to compute Fig. 8 are given in

Appendix 2. The peak amplification plotted for each choice

of ki and kp is the maximum over any frequency of the

sensitivity function, as in Fig. 5. We define the response

time to be the time it takes (see e.g. Fig. 6a) for the system

to reach within 1/e of the target temperature. At high values

of the integral gain, particularly for N = 2, there is sub-

stantial overshoot, and so the time it takes before the sys-

tem stays within 1/e of the target temperature can be longer

than it would be for smaller integral gain; this region is

shaded.
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Fig. 3 Sensitivity analysis: the product G(s)K(s) is plotted in the

complex plane for representative choices of feedback gains (‘‘high’’

gain case in Table 1). The shaded region indicates sensitivity function

larger than one (amplification of natural variability), while any part of

GK outside the shaded region corresponds to attenuation. Amplifica-

tion increases closer to the -1 point, which represents the stability

boundary. The parametric curves GK are plotted with zero time delay

(unachievable in practice, but would allow no amplification at any

frequency), with decisions every N = 1 year based on average

temperature in the previous year, and with decisions every N = 2

years based on the average temperature over previous 2 years.

Frequency is not explicit in this plot; the ‘?’ marks correspond to

periods of 4, 8, and 12 years; see also Figs. 4 and 5
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Fig. 4 G(s)K(s) plotted as a function of frequency for N = 1 with

magnitude in the upper panel and phase in the lower panel, for the

‘‘high’’ gain case in Table 1 (solid), and for the same integral gain but

with zero proportional gain (dashed). For frequencies much less than

1/10 (years)-1, the magnitude |GK| � 1 and we expect significant

attenuation (see Fig. 5); this frequency is determined primarily by the

choice of integral gain (compare with response times in Fig. 8). When

the magnitude |GK| ^ 1 (indicated by filled circle), then the phase of

the complex number GK is important in determining the response,

with significant amplification if the phase is close to -180� (see

Fig. 3). For a given choice of integral gain, then introducing some

non-zero proportional gain improves the phase at frequencies where

|GK| ^ 1 (the frequency where |GK| = 1 is indicated with dashed

lines in each case)

Table 1 Feedback gains used in generating Figs. 3, 4, 5 and 6, and in

simulations with HadCM3L in Sect. 5

Case ki kp

‘‘High’’ gain 1.8 1.2

‘‘Low’’ gain 0.9 0.6

Proportional gain kp has units (% solar)/�C, while integral gain ki units

are (%solar)/�C/(year)-1. Note that the word gain describes the ratio

between an input and an output. In Hansen et al. (1984) and Bode

(1945), both the ‘input’ and ‘output’ variables have the same units

(e.g., �C/�C in Hansen et al., or V/V for amplifier design) and thus the

gains in those contexts appear to be dimensionless; this is not true in

general
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Also note that for any given integral gain, the smallest

value of the peak amplification occurs for some non-zero

proportional gain. This can be understood from Eq. (10)

and Fig. 3. At higher frequencies, the phase of kp ? ki/s is

less negative than the phase of ki/s alone, shifting the

curves in Fig. 3 away from the point -1 and the shaded

region of amplification. The added phase is shown more

clearly in Fig. 4. This effect is countered by the increased

magnitude of kp ? ki/s relative to ki/s alone; trading off

these two effects leads to an optimum value of kp for any

choice of ki which minimizes peak amplification. Figure 4

can be used to design reasonable values of the proportional

and integral feedback control gains (see e.g. Åström and

Murray 2008). Note that our choices of proportional gain in

Table 1 are roughly those that give the minimum peak

amplification for a given response time. Finally, note from

Fig. 4 that it is not necessary here to include the derivative

term of a PID control structure. Near the frequency where

the magnitude |G(s)K(s)| = 1, then G(s) is proportional to

s-1/2 and with only PI gains, the ‘‘slope’’ of K(s) will be

between s-1 and s0. A large derivative gain would give a

slope of s?1, and the product GK would then be increasing
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Fig. 6 Time-domain response with feedback, illustrating conver-

gence of temperature to some target value (left) and the amplification

of natural variability in certain frequency ranges (right). a An

idealized scenario where the feedback is turned on in year zero to

return the temperature to the target value, with F̂ ¼ 0 for simplicity.

Natural variability is removed for clarity of illustration. Higher gain

(solid lines) results in faster response, but with the potential for

overshoot, particularly for longer time delay of N = 2 (red). For

N = 2, forcing is updated every 2 years (indicated by square). b The

high-gain case for N = 2, now including natural variability. Back-

ground variability at a 6–7 years period is amplified. Gains are given

in Table 1
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Fig. 7 Power spectrum of temperature variability with (green) and

without feedback (blue), calculated using the box-diffusion model

with imposed white noise radiative forcing to represent natural

variability. The actual variability of the global mean temperature is

shown in red for comparison with the no-feedback case here,

estimated from detrended annual anomalies using NOAA NCDC data

from 1880–2011. The power spectral density of the white noise

[w(s) in Eq. (4)] is chosen so that the model variability reasonably

approximates the actual spectrum. Only the high-gain case with

N = 1 is shown; lower gain results in less amplification. The ratio of

the spectrum with and without feedback is the sensitivity function

shown in Fig. 5

250 D. G. MacMartin et al.

123



with frequency rather than decreasing. A small derivative

gain could be useful to compensate for the more negative

slope of G(s) at high frequencies (and corresponding more

negative phase) if the surface layer heat capacity C were

large.

Figure 8 illustrates the trade-offs between response time

and peak amplfication. For example, to keep peak ampli-

fication \20 %, the minimum possible response time for

any choice of gains is 3.4 years with N = 1, increasing to

6.3 years with N = 2; for 10 % amplification, the fastest

response time increases to 6.7 or 11 years for N = 1 or

N = 2.

Finally, one further essential aspect to feedback can also

be seen from Fig. 8: an indication of how accurately the

climate dynamics must be known in order for feedback to

be effective. Without feedback, if the climate response to

either GHG or solar forcing was uncertain by a factor of

two, then applying the best estimate of the required radi-

ative forcing would result in either half or double the

desired response. (If both the response to GHG and SRM

radiative forcing were uncertain by the same amount, the

desired result would still be obtained as long as the radi-

ative forcings were known.) With feedback, an uncertainty

in the effectiveness of SRM is equivalent to an uncertainty

in the feedback gains, that is, whether G(s) differs by a

factor of two or K(s) differs by a factor of two, the product

GK will still differ by the same factor of two, leading to the

same change in sensitivity, same change in peak amplifi-

cation, and same change in time constant. For example, a

factor of two uncertainty in SRM effectiveness might

correspond to having intended to use the ‘‘low’’ feedback

gains in Fig. 8, but the behaviour instead being that of the
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Fig. 8 Contours indicate the dependence of response time (top row,

years) and peak amplification (bottom row) as a function of

proportional (kp) and integral (ki) gains, with units as in Table 1.

The left pair of panels correspond to making decisions every N = 1

years based on the average temperature over the previous year, the

right pair correspond to N = 2. The red (N = 2) and blue (N = 1)

squares (‘‘high’’) and circles (‘‘low’’) correspond to the gains in

Table 1, used in Figs. 3, 4, 5 and 6, and in HadCM3L simulations.

The peak amplification is the maximum value of the sensitivity

function (see e.g. Fig. 5). Response time is defined as the number of

years required to reach within 1/e of a target temperature (see e.g.

Fig. 6a), giving an indication of how rapidly the feedback can

compensate for errors or changes in either the forcing, the climate

system, or the goal. The response characteristics are not a simple

exponential function of time: for high integral gain, the response

oscillates before converging, particularly for N = 2. The shaded

region indicates where this overshoot exceeds 1/e, so the time before

the system stays within 1/e of the final value exceeds the response

time given by the contours
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‘‘high’’ feedback gains. This leads to an uncertainty in the

response time, but no change in the steady-state response.

This robustness to model uncertainty is an important pur-

pose of using feedback. Note that for a sufficiently large

feedback gain, a further increase might lead to instability.

However, there is no need to choose gains this large,

especially as the peak amplification is quite substantial at

much lower gain than that which would lead to instability.

Summarizing the effects of feedback control choices:

• Proportional feedback is equivalent to reducing the

climate sensitivity; there will still be steady-state error

in response to uncertain radiative forcing even with

feedback.

• Including an integral term in the feedback means that,

at least in steady-state, the error will be zero (as long as

the system remains stable).

• In addition to the desired effect, feedback will respond

to natural climate variability, attenuating low frequency

variability, but also amplifying variability in some

frequency ranges.

• Any time delay exacerbates the amplification of climate

variability, as evidenced from Fig. 5.

• Higher integral gain results in both a more rapid

response to changes, but also a higher amplification of

natural variability.

• For any given integral gain, there is an optimal choice

of proportional gain that minimizes this amplification.

• Uncertainty in the climate response is equivalent, in

terms of behaviour, to uncertainty in the feedback

gains. With appropriately chosen gains, the behaviour

with feedback is reasonably robust to uncertainty in the

magnitude of the climate response to forcing.

5 HadCM3L simulations

In order to verify that the predictions made above using a

simple box-diffusion model of the climate are indeed

reflective of what might occur in a more complex climate

system, we simulate the effect of the gain choices in

Table 1, with a delay of N = 1 and N = 2 years, in the

HadCM3L fully coupled atmosphere-ocean general circu-

lation model.

This model has resolution of 3.75� in longitude by 2.5�
in latitude in both the atmosphere and ocean, with 19

vertical levels in the atmosphere and 20 in the ocean (Jones

2003). This model has been used for simulating SRM (Lunt

et al. 2008), for exploring regional effects of SRM (Ricke

et al. 2010), and for optimizing the spatial/temporal dis-

tribution of solar reduction in SRM (MacMartin et al.

2013). HadCM3 is a participant in the Geoengineering

Model Intercomparison Project (GeoMIP; Kravitz et al.

2011); intercomparisons show HadCM3 achieves similar

results to other AOGCMs in simulating geoengineering by

reducing the solar constant (Kravitz et al. 2013). Feedback

is implemented by (1) simulating 1 year of climate

response, (2) computing the corresponding feedback

response to this ‘observed’ climate state, externally to the

GCM, (3) updating the solar constant, and (4) restarting the

GCM simulation for the next year. The actual time it would

take for the solar forcing to be changed is not considered

here; if geoengineering were implemented using strato-

spheric aerosols, for example, this might take several

months at least, while changes to marine cloud brightening

could likely be made much more rapidly.

The model is forced with RCP4.5 concentrations

(Meinshausen et al. 2011). Feedback is initiated in year

2040, with the goal of returning the global mean temper-

ature to the same value as in 2020; this introduces an initial

step in the desired climate state. We are not arguing for this

particular implementation scenario, but simply using this

scenario to describe how feedback might be used and what

its effects could be.

The global mean temperature response with feedback is

shown in Fig. 9, using the same gains chosen for the box-

diffusion model (Table 1), and F̂ ¼ 0 for simplicity. In all

four cases, the feedback indeed results in convergence of

the global mean temperature to the desired value, with the

higher gains leading to more rapid convergence. However,

as expected from Fig. 6b, with N = 2 and higher gains, this

coupled human–climate system oscillates about the desired

reference temperature, with colder periods resulting in a

desire for less solar reduction, but by the time that reduc-

tion is in effect, the temperature is too warm, resulting in a

desire for more solar reduction, and so forth. The temper-

ature response to this variation is larger over land than over

oceans as shown in Fig. 10 (see also Sutton et al. 2007;

MacMynowski et al. 2011b); other climate variables also

respond to this time-varying solar reduction.

The HadCM3L simulations were continued until 2500 to

provide a longer time-record for assessing the change in

climate variability. The sensitivity function (ratio of ampli-

tude spectrum with feedback to that without) corresponding

to the same four cases are shown in Fig. 11, along with the

predictions made using the box-diffusion model in Fig. 5. In

all cases, despite the added complexity, the dynamic

behaviour of the coupled human–climate feedback system in

HadCM3L is well captured by the predictions made using the

simple box-diffusion model. The feedback-control allows

the target global mean temperature to be reached without

requiring any knowledge of the GHG radiative forcing, the

relative efficacy of solar reductions, nor details of the climate

model beyond the box-diffusion model that was used to

choose reasonable values for the feedback gains.
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Figure 12 illustrates that using solar reductions to

maintain the global mean temperature in the presence of

greenhouse gas forcing also reduces regional temperature

anomalies, as expected from previous studies (e.g.,

Govindasamy and Caldeira 2000; Moreno-Cruz et al.

2011). The root-mean-square (rms) difference between the

2080–2100 average temperature and the 2020 target value

(averaging years 2010–2030) is 0.4 �C with the solar

reduction, compared to 1.6 �C without. The rms difference

in precipitation over land relative to the 2020 target also

decreases when the solar reduction is adjusted to maintain

global mean temperature, although the reductions are more

modest (from 0.14 to 0.08 m/year; a 40 % decrease). These

temperature and precipitation residuals are not associated
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Fig. 9 Simulation results from HadCM3L for two different choices of feedback gains (higher gain for upper plots, lower gain for lower plots),

and for N = 1 (left) and N = 2

Fig. 10 Temperature pattern

associated with the near-

oscillatory variability in

Figs. 9b and 11b. A composite

map is created by averaging the

temperature distribution during

years where the oscillation

reaches its maximum

temperatures, and a similar

composite map created for years

of minimum temperature; the

difference between these is

plotted. The dominant

temperature response to this

frequency of solar forcing is

over land
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with the use of feedback, but result from the fact that

spatially-uniform solar reductions do not yield the same

pattern of climate change as greenhouse-gases. A non-

uniform solar reduction could reduce these residuals

(MacMartin et al. 2013).

Feedback could also be used to manage variables other

than the global mean temperature. Figure 13 shows an

example using feedback of land-averaged precipitation. This

is not intended to be a realistic target, but it illustrates that

higher variability does not limit the use of feedback. Both

the spectrum of natural variability and the transfer function

G(s) have only a weak dependence on frequency for this

variable (MacMynowski et al. 2011a, b). The phase lag from

G(s) is thus small, and choosing only integral control ensures

that the total phase of the product GK remains near -90�,

and the curve GK remains far from the point -1 (see Fig. 3).

The remaining analysis is similar to feedback-control of

temperature: the sensitivity function can be estimated, and

has characteristics similar to Fig. 5, including the amplifi-

cation of natural variability in some frequency range, and the

‘‘waterbed’’ effect where increasing the rejection in some

part of the frequency band results in increased amplification

at some other frequencies. The solar reduction computed by

the feedback algorithm depends on both Fr (the ‘‘signal’’)

and w (the ‘‘noise’’). Because the signal-to-noise ratio is

lower for this variable than for temperature, either there will

be larger variability in the desired solar reduction, or lower

gains will be required, resulting in slower compensation of

changes. As Fig. 13 shows, it is possible to maintain the

average value of a ‘‘noisy’’ variable like precipitation

without introducing comparable variations in the desired

solar reduction. The high inter-annual variability evident in

the top panel of Fig. 13 is averaged by the integral action of

the feedback-controller.

6 Conclusions

Some form of solar geoengineering may eventually be

considered as a possible element of a strategy to minimize

climate change risks. The amount of solar reduction in any

solar geoengineering scheme would need to be adjusted in

response to the observed climate in order to meet any

specific objective. Even if feedback was not explicitly

planned as part of the implementation strategy, some

feedback would be almost inevitable as the implementation

of SRM is inherently sequential—there is an implicit

repeated decision to be made about the level of replen-

ishment of the SRM forcing, and this decision will

unavoidably be influenced by the climate response.

This feedback would compensate for inevitable uncer-

tainty in the climate system dynamics including equilibrium
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Fig. 11 Sensitivity function

computed from HadCM3L

simulation results and compared

with predictions (red) for the

same gain cases as in Fig. 9.

The power spectrum of global

mean temperature is computed

both without SRM and with

feedback regulation of SRM;

the sensitivity is the ratio of the

amplitude spectra
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climate sensitivity, the radiative forcing due to greenhouse

gases, and the radiative forcing due to the application of

SRM. However, in addition to this desired effect, this

feedback would also react to natural climate variability,

attenuating it at low frequencies, but amplifying it at higher

frequencies. This attenuation/amplification is unavoidable,

with the peak amplification depending on the choice of

gains, and exacerbated by any time delay introduced into

the feedback implementation. The frequency of peak

amplification depends on the dynamics of the climate

response, the time delay, and the choices of feedback gains

(e.g., the peak is at a 5–10 year period for the models and

range of parameter choices simulated here). The effect that

these changes in natural variability might have on humans

or ecosystems is unknown, but policy regimes would want

to minimize such effects, at the very least to avoid intro-

ducing unnecessary solar reductions.

The amplification of natural variability can be mini-

mized by first choosing the best guess for the level of solar

reduction required to achieve the desired climate response

(thus minimizing the compensation required by feedback),

and second, by minimizing any time delay between chan-

ges in the climate and the corresponding feedback

response. While possibly counter-intuitive, the amplifica-

tion of natural variability is minimized not by averaging

over longer time periods before making a decision, but by

adjusting the solar reduction more often: the desired

averaging is already incorporated within the integral con-

trol of the feedback algorithm, and additional averaging

only increases the delay between observing and responding

to climate changes. This result highlights the policy chal-

lenges of SRM as the narrow technical requirements for

effective feedback control may be incompatible with

political requirements for a stable decision-making process

that is able to gain legitimacy, as such a process may

require substantial time delay.

The effect of changing the feedback-control gains by a

factor of two is to change both the rate of convergence and

the degree of amplification of natural variability. However,

for appropriately chosen gains, the system will still con-

verge to the desired target state. A consequence of this is

that one could be significantly wrong about the dynamics

Fig. 12 Regional temperature (left, �C) and precipitation (right,

m/year) averaged over years 2080–2100 relative to the average over

2010–2030, without solar geoengineering (top row) and with

geoengineering that uses feedback to maintain the global mean

temperature at 2020 levels (bottom row). The temperature change is

non-zero everywhere despite the global mean change being small

(0.06 �C), however the temperature changes are significantly smaller

compared to those without geoengineering. Solar reductions are less

effective at compensating the precipitation changes that result from

increased greenhouse gas concentrations
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of the system and still achieve the desired result; that is, the

use of SRM need not require a good model of the climate if

feedback is used to manage the amount of solar reduction.

We have used feedback of the global mean temperature

to illustrate the dynamic effects introduced by using feed-

back. All of these conclusions would apply regardless of

what variable was being controlled, although there may be

smaller signal to noise ratio and larger model uncertainty

associated with some variables such as precipitation.

Controlling the global mean temperature also does not give

a spatially-uniform temperature response. Multiple objec-

tives, including regional goals, might be simultaneously

maintained by adjusting the spatial and/or temporal dis-

tribution of solar reduction as in MacMartin et al. (2013);

this would lead to a multivariable control structure.

More complex feedback algorithms may be appropriate.

An adaptive algorithm as in Jarvis and Leedal (2012) could

better estimate model parameters to adjust F̂ and minimize

the need for feedback (i.e., by reducing the uncertainty).

Model predictive (or receding-horizon) control could

adjust forcing levels using a more complicated model

including any known nonlinear effects as well as the linear

dynamics considered here, including predictions of future

emissions, and including constraints on solar reduction or

its rate of change. While these algorithms might improve

the compensation of anthropogenic climate change, the

fundamental constraints described here will still hold.

Acting on the observed state with any form of control

enables one to partially overcome the effects of uncer-

tainty, but at the cost of amplifying variability.
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Appendix 1: Time-domain calculations

with box-diffusion model

Equations (1–2) can be solved using the Laplace transform.

From (2), the temperature in the deep ocean satisfies

Tdðs; zÞ ¼ MðsÞe�
ffiffiffiffiffi
s=j
p

z ð14Þ

for some function M(s), where s is the Laplace variable.

Subtituting this into the Laplace transform of (1) and

solving for M yields (3).

From Laplace transform tables, the response of a semi-

infinite diffusion model (Eq. (3) with C = 0) to a unit step

change in radiative forcing at t = 0 is

gsdðtÞ ¼
1

k
1� et=serfcð

ffiffiffiffiffiffi

t=s
p

Þ
� �

ð15Þ

where erfc denotes the complementary error function. With

the surface layer included, the step response can be

obtained by first factoring G(s) in Eq. (3) as

GðsÞ ¼ 1=n
ffiffi
s
p þ b

� 1=n
ffiffi
s
p þ a

ð16Þ

similar to the derivation in Lebedoff (1988) or Morantine

and Watts (1990), where we introduce

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2=j� 4Ck
q

¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s� 4C=k
p

ð17Þ

and a; b ¼ ðb=
ffiffiffi
j
p
� nÞ=ð2CÞ satisfying (an)-1 - (bn)-1 =

k-1. As in (15), the step response is then

gbdðtÞ ¼ 1=k� 1=ðbnÞeb2terfcðb
ffiffi

t
p
Þ þ 1=ðanÞea2terfcða

ffiffi

t
p
Þ

ð18Þ

For 4C� ks as here, then a2^ k2s/C2 and b2^ 1/s, and

the first two terms in Eq. (18) are approximately the same

as the step response of the semi-infinite diffusion model in

Eq. (15), while the final term provides a correction

for small t/s. In calculating this final term, note that for

a
ffiffi
t
p
� 1 then

ea2terfcða
ffiffi

t
p
Þ ’ ð2=

ffiffiffi
p
p
Þ

ða
ffiffi
t
p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2t þ 2
p

Þ
ð19Þ

The simulations here consider only the average

temperature over each year. For semi-infinite diffusion,

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0.72

0.74

0.76

0.78

0.8

0.82
La

nd
−

av
er

ag
e 

pr
ec

ip
ita

tio
n 

(m
/y

r)

RCP 4.5

Feedback

2020 target

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
0

0.5

1

1.5

2

Time (years)

S
ol

ar
 r

ed
uc

tio
n 

(%
)

Fig. 13 Using feedback starting in 2040 to return land-average

precipitation to its 2020 value in HadCM3L. The upper plot shows the

precipitation with and without solar reduction, the lower plot shows

the corresponding solar reduction determined by the feedback

algorithm
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the average temperature in the nth year after a step change

in radiative forcing is

Zt¼n

t¼n�1

gsdðtÞdt ¼ 1

k
� 1

k
2
ffiffiffiffiffiffiffiffiffi

st=p
p

þ set=serfcð
ffiffiffiffiffiffi

t=s
p

Þ
� �n

n�1

ð20Þ

¼ 1

k
½1� qðs2; nÞ� ð21Þ

where this defines the function q(a;n). Then for the box-

diffusion model,

hðnÞ ¼
Zt¼n

t¼n�1

gbdðtÞdt ¼ 1

k
þ 1

n
qða; nÞ

a
� qðb; nÞ

b

� �

ð22Þ

Simulations here also assume that the radiative forcing is

held constant over each year. Given a sequence of forcings

f(k) applied during year k, then since the sequence

h(n) gives the annual-average temperatures due to a unit

step forcing starting at k = 0, the temperature response to

the sequence f(k) can be expressed as

TðnÞ ¼
Xn

k¼1

hðkÞf ðn� kÞ ¼
Xn�1

k¼0

hðn� kÞf ðkÞ ð23Þ

Appendix 2: Frequency-domain calculations

The dynamic response of the climate system with feedback,

shown in Figs. 5, 6, 7 and 8, can be understood and an

approximate prediction made using G(s) in Eq. (3), K(s) in

Eq. (10), and approximating the effects of the N-year

averaging with the Laplace transform of a pure time

delay, e-Ns (obtained from the Laplace transform of

~yðtÞ ¼ yðt � NÞ).
However, more accurate calculations of the frequency

response requires taking into account that updates of solar

forcing are only made at discrete time-intervals, not as a

continuous function of time. The feedback system includ-

ing this detail is shown in Fig. 14, where the block

G(s) describes the continuous-time evolution of the climate

response to forcing as before, A(s) represents the averaging

of the output over the past N years, which is then sampled

every N years, and Z(s) is a ‘‘zero-order hold’’ that

describes the assumption that the solar reduction computed

at every N-year decision point is held constant over the

subsequent N years. The discrete-time PI control law

uðkÞ ¼ kpyðkÞ þ ki

Xn¼k

n¼0

yðnÞ ð24Þ

is represented by its z-transform, K(z). Analysis details can

be found in any discrete-time controls textbook (e.g.

Franklin et al. 1997); here we simply provide the required

formulae used in computing the results herein.

For frequencies less than the Nyquist frequency (half the

sampling rate), then the Laplace transform of the discrete-

time control law K(z) can be obtained by setting z = eNs,

yielding

KðsÞ ¼ kp þ ki

N

1� e�Ns
ð25Þ

The Laplace transform of the N-year averaging process is

AðsÞ ¼ 1� e�Ns

Ns
ð26Þ

which is used in all calculations here, and at frequencies

small compared to 1/N, behaves similarly to a pure time

delay of N/2 years. Maintaining a constant value of the

applied radiative forcing for N years (a zero-order-hold)

yields Z(s) = A(s), so that A(s)Z(s) has an effect similar to

that of an N-year time delay.

Finally, note that sampling the continuous-time system

Gaz(s) = A(s)G(s)Z(s) at N-year intervals results in alias-

ing. That is, temperature variations with frequency f and

variations at frequency 1/N - f are indistinguishable in the

sampled signal. (There are an infinite sequence of indis-

tinguishable frequencies, but only the first is significant in

predicting the response.) Thus at frequencies below the

Nyquist frequency, the system Gs(s) within the dashed lines

of Fig. 14 is approximately

GsðixÞ ¼ GazðixÞ þ Gazð2p=N � ixÞ ð27Þ
¼ GazðixÞ þ G�azðix� 2p=NÞ ð28Þ

with ð�Þ� denoting complex-conjugate. The loop transfer

function in Figs. 3 and 4 and the subsequent calculations of

the sensitivity function are obtained using K(s) in (25) and

Gs(s) in (28), where the latter depends not only on G(s) in

(3) but also on A(s) and Z(s) in (26).

Fig. 14 Block diagram of geoengineering feedback, as in Fig. 2, but

with additional detail required for accurately predicting dynamics.

The response of the climate system G(s) is averaged over the previous

N years [A(s)], sampled, and the actual feedback law implemented in

discrete-time [K(z)] rather than continuous-time. The desired SRM

forcing at each discrete decision point in time is assumed to be held

constant for the next N years, until the next sample is made. The

system within the dashed box is sampled, resulting in aliasing
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