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Solar geoengineering has been suggested as a tool that
might reduce damage from anthropogenic climate
change. Analysis often assumes that geoengineering
would be used to maintain a constant global mean
temperature. Under this scenario, geoengineering
would be required either indefinitely (on societal
time scales) or until atmospheric CO2 concentrations
were sufficiently reduced. Impacts of climate change,
however, are related to the rate of change as well
as its magnitude. We thus describe an alternative
scenario in which solar geoengineering is used only
to constrain the rate of change of global mean
temperature; this leads to a finite deployment period
for any emissions pathway that stabilizes global mean
temperature. The length of deployment and amount
of geoengineering required depends on the emissions
pathway and allowable rate of change, e.g. in our
simulations, reducing the maximum approximately
0.3◦C per decade rate of change in an RCP 4.5 pathway
to 0.1◦C per decade would require geoengineering for
160 years; under RCP 6.0, the required time nearly
doubles. We demonstrate that feedback control can
limit rates of change in a climate model. Finally,
we note that a decision to terminate use of solar
geoengineering does not automatically imply rapid
temperature increases: feedback could be used to limit
rates of change in a gradual phase-out.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
Much of the discussion on solar radiation management (SRM; variously sunlight reflection
methods) either implicitly or explicitly assumes that it would be used to maintain an
approximately constant global mean temperature, e.g. restoring to pre-industrial, or avoiding
temperature rising above some threshold. This includes almost all SRM simulations to date,
including early work [1] and both steady-state and transient experiments G1–G3 in the current
GeoMIP simulations [2,3]; some recent papers have been even more explicit, using feedback to
maintain a particular temperature [4,5].

This implied framing in existing analyses could have a significant effect on perceptions of
SRM risks as it implies that, once deployed, there is a necessity to maintain an SRM deployment
either for millennia or until CO2 concentrations were sufficiently reduced; this raises legitimate
concern over the possibility that, at some point during that time interval, the deployment might
be interrupted, leading to rapid warming [6–13].

Temporary SRM deployment solely to limit rates of temperature change would avoid
millennial-scale implementation, and while it would not address problems such as temperature-
dependent tipping point thresholds, it could reduce impacts and risks that are associated with
rates of change [14,15]. Recent and projected rates of change are significantly higher than historical
levels, creating challenges for ecosystem adaptation [16,17]. In addition to ecosystem responses,
some physical climate thresholds may also be rate dependent [18]. Rates of change are also an
important factor in human impacts from climate change [11,19]. At a minimum, introducing
a delay in reaching any particular temperature-dependent climate impact would increase the
amount of time to both learn and adapt; by reducing the needed rate for adaptation, it could
reduce economic costs of adaptation, although the societal response to delaying impacts is
unclear. An ad hoc temporary SRM approach was suggested by Wigley [6], and Eliseev et al.
[20] arrive at a temporary solution by allowing some rate of change, similar to the approach
described here. More recently, Keith [14] and Keith & MacMartin [15] have explicitly described a
geoengineering scenario that would be temporary, by cutting the rate of radiative forcing growth
in half. Keith & MacMartin [15] also motivate using SRM only to partially offset the anthropogenic
radiative forcing from other sources, because the risks associated with using solar geoengineering
increase with higher solar reductions. Offsetting all other anthropogenic radiative forcing would
also overcompensate precipitation changes [21].

Scaling the radiative forcing growth rate still leads to uncertainty in the rate of climate
change owing to uncertainty in the climate response. Rather than cutting the radiative forcing
growth rate, here we use feedback of the global mean temperature to limit the rate of change
of temperature directly. We consider the different representative concentration pathways (RCPs)
[22,23] that are frequently used as standard scenarios to explore future anthropogenic climate
change [24], and explore how the choice of emissions pathway and the value chosen for the
maximum allowable rate of temperature change affect both the duration and the amount of SRM
deployment. The decision to use SRM could influence the emissions pathway; results here for any
particular RCP should thus be interpreted as applying to the pathway followed in conjunction
with SRM, and, as in any SRM simulation, cautiously interpreted in comparing with the same
pathway without SRM.

We use feedback [4,5] of ‘observations’ (here, model output) to adjust the level of SRM in
order to achieve a specified rate of temperature change in our simulations. If some forms of SRM
were ever implemented, models of the climate system would presumably be used to estimate
how much radiative forcing would be needed to meet the desired objectives. However, because
the models would never exactly match the real world, feedback would be needed to adjust
the radiative forcing of SRM based on the observed climate. Even if not explicitly planned, a
prolonged period of warmer or cooler than expected temperatures could lead to an adjustment
of the amount of solar geoengineering applied—this adjustment in response to observations (or
changing circumstances) is a feedback process; a form of adaptive ecosystem management [25]
here applied at planetary scale. Feedback is thus an essential tool for managing uncertainty.
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Furthermore, once this feedback of observations is included, it is no longer necessary to have an
accurate model of the climate system in order to meet specified climate objectives [5]; the model
needs only to be good enough to design the feedback strategy, and make an initial rough estimate
for how much to adjust solar reductions in the next year based on the change in anthropogenic
radiative forcing from the previous year; this initial adjustment will then be corrected based on
observation-based feedback. Of course, any observational errors [26] will result in the feedback
tracking observational estimates rather than the actual climate state.

Following prior work [1], we represent solar geoengineering generically as a reduction in solar
insolation at the top of the atmosphere. We use the HadCM3L fully coupled atmosphere–ocean
general circulation model (GCM) as our representation of the unknown ‘real world’, and a much
simpler box-diffusion model as our approximate model. These are described in more detail in §3,
but a key insight is that this simple model is sufficient when using feedback. We also use this
simple model for computationally efficient predictions of the transient global mean temperature
response in parametric explorations.

We estimate the amount of solar insolation reduction required to achieve a target rate of
warming using the box-diffusion model. In our GCM simulations, we adjust this estimate each
year based on feedback of the global mean temperature to maintain a roughly constant rate of
temperature increase; this feedback compensates for any differences between the simple model
and the GCM. This approach—combining prediction and correction—thus captures the situation
that would be faced in actual implementation, where we do not have the option to re-run a
simulation in order to tune the amount of SRM.

2. Impact of representative concentration pathway and allowable
rate of change

The temperature and its rate of change for different RCPs is shown in figure 1, calculated using the
box-diffusion model that has been tuned to match the HadCM3L AOGCM response. A climate
sensitivity higher or lower than the HadCM3L value of 3.2◦C per CO2-doubling would scale both
the temperature and its rate of change. The rates of change are calculated from a running 30 year
linear least-squares fit, and expressed as a decadal rate of change. The peak rate of change over
any 30 year period is roughly 0.25, 0.3, 0.35 and 0.55◦C per decade for RCP 2.6, 4.5, 6.0 and 8.5
pathways, respectively.

First, consider the specific example of using SRM to constrain the maximum rate of change
to 0.1◦C per decade or 1◦C per century; this is roughly half the century-scale warming rate for
RCP 4.5 in this model. HadCM3L simulation results are shown in figure 2 for an RCP 4.5 emissions
pathway. Temperatures for remaining pathways are shown in the electronic supplementary
material, figure S1; the required solar reduction for each pathway is shown in figure 3. Note that
the use of feedback results in insolation reductions that unavoidably respond to natural variability
[4], but ensures that the target trajectory of 0.1◦C per decade is approximately followed.

While the rate of change of global mean temperature in the simulations in figure 2 is
constrained to the specified level, the rate of change is not spatially uniform; this is shown in
figure 4; see the electronic supplementary material, figure S2, for a discussion of the statistical
significance of local rates of change. If solar geoengineering is used to limit the rate of change
of global mean temperature to 0.1◦C per decade, the rate of change of temperature is reduced
in most places, but not uniformly. Even with a target of a constant global mean temperature,
regional temperatures do not remain constant owing to the difference in the response pattern
between greenhouse gas forcing and that resulting from solar reductions [27].

We discuss two metrics that can be evaluated to characterize the amount of solar reduction
required for any specified rate of change of temperature and for any emissions pathway. First,
the duration of SRM deployment; for any of the RCPs, this will be finite for any specified rate of
change greater than zero, because all of the RCPs eventually stabilize radiative forcing and thus
temperature increase. By contrast, using SRM to maintain a constant global mean temperature
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Figure 1. Predicted global mean temperature (a) and rate of change (b) corresponding to different RCPs, computed using a
box-diffusion model with a climate sensitivity of 3.2◦C per CO2-doubling and time constants chosen to match the HadCM3L
GCM behaviour. (The results scale linearly with climate sensitivity.) Rates of change are calculated over 30 year intervals, and
expressed in degrees Celsius per decade. A 0.1◦C per decade rate of change is also shown in (a), starting in 2020, and for RCP 4.5,
the approximate time over which SRMwould be required in order to maintain this rate is shaded. (Online version in colour.)

results in an SRM deployment that would greatly exceed the simulation time horizons considered
here, and for CO2 emissions scenarios, would last at least until such time that atmospheric
greenhouse gases are naturally or artificially removed from the atmosphere. A second metric
is the peak solar reduction required at any point during the deployment. This is relevant for
understanding risks associated with the amount of solar reduction, such as ozone depletion
if stratospheric aerosols are used, although this would also depend on the timing of the peak
because it depends on halogen concentrations. A third metric could be the integrated amount of
solar reduction over the entire deployment, i.e. the shaded region in figure 2. The average solar
reduction over the deployment is roughly half of the maximum value, so this can be estimated
from the duration and peak solar reduction (see electronic supplementary material for details).

The amount of solar reduction required to maintain a 0.1◦C per decade rate of change for
different RCP scenarios is shown in figure 3, for both the box-diffusion model prediction and
the HadCM3L simulation; these cases can be used to evaluate the metrics described above.
The box-diffusion model provides a good prediction except for the RCP 8.5 case, owing to
nonlinearities in the HadCM3L temperature response at high radiative forcing. This case also
serves to illustrate the importance of using feedback of the ‘observed’ temperature to compensate
for errors between the prediction model and the actual system. While here the box-diffusion
model was tuned to match HadCM3L behaviour, this would not be possible in a real deployment.

The length of time that a solar geoengineering system would need to be deployed and the
maximum value of solar reduction required are shown for the box-diffusion model in figure 5.
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Figure 2. Solar geoengineering used either to maintain constant global mean temperature (‘0◦C per decade’) starting
in 2020 or to limit rate of change to 0.1◦C per decade for an RCP 4.5 emissions pathway (other RCP cases are shown
in the electronic supplementary material). Smooth lines (with no climate variability) are from the box-diffusion model,
whereas lines with climate variability are from HadCM3L. For HadCM3L, feedback of the global mean temperature is used
to adjust the level of solar reduction to maintain the temperature at its chosen value. Global mean temperatures are
shown in (a), and the corresponding solar reduction in (b). Also shown in (b) is the maximum solar reduction (Smax)
predicted by the box-diffusion model for the 0.1◦C per decade case, the length of time over which SRM would be
required to achieve this (tSRM), and the integrated amount of SRM (shaded region); these metrics are shown in figure 5
and the electronic supplementary material, figure S3, for different RCPs and allowable rates of change. (Online version
in colour.)

The integrated solar reduction over the deployment is shown in the electronic supplementary
material, figure S3 and table S1. The choice of emissions trajectory has a profound influence
over the magnitude and duration of geoengineering required to limit the rate of change of global
mean temperature. For the 0.1◦C per decade case illustrated in figures 2 and 3, the time required
increases from roughly 40 years with RCP 2.6 to more than 800 years for RCP 8.5, whereas the
maximum solar reduction increases from 0.25% to roughly 5%. Figure 5 is calculated using the
box-diffusion model; the values estimated for RCP 8.5 are thus slightly too high owing to the
nonlinearity noted above.

The duration and maximum amount of solar reduction presented herein are strongly
dependent on the assumed climate sensitivity, shown in figure 6, giving some insights into the
uncertainty in these metrics.

The use of feedback to maintain a specified rate of change of temperature is also relevant if a
choice was made to terminate geoengineering. It has often been stated that terminating a solar
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Figure 3. Comparison of the solar reductions required to maintain a 0.1◦C per decade rate of temperature change for different
RCP emission pathways. The RCP 4.5 case is the same as in figure 2b. Each case is predicted using the box-diffusion model, and
then simulated using HadCM3L, with feedback to correct for differences between the box-diffusion model and the GCM. Note
that the box-diffusion model in this case provides a good estimate for RCP 2.6, RCP 4.5 and RCP 6.0, but that nonlinearities in
HadCM3L at high radiative forcing result in the box-diffusion model giving a poorer prediction for RCP 8.5: this illustrates the
value of using feedback, as the 0.1◦C per decade rate of change of temperature is maintained (see electronic supplementary
material, figure S1) despite the model errors. (Online version in colour.)

geoengineering deployment would lead to rapid temperature change; for example, the recent
Intergovernmental Panel on Climate Change report [28] includes the statement ‘If SRM were
terminated for any reason, there is high confidence that global surface temperatures would rise
very rapidly. . .’. While this is clearly true if some war or calamity caused a sudden termination
in the use of solar geoengineering, it is important to note that this does not follow if there was a
conscious choice to phase-out solar geoengineering for some reason, such as newly discovered
side-effects. Furthermore, if a sudden termination did occur, it is conceivable that the solar
geoengineering deployment might be rapidly re-initiated. Such a brief termination might have
characteristics of a similar magnitude but opposite in sign to those of a volcanic eruption. The
approach used here is also applicable to limit how rapidly the climate is allowed to warm, trading
off impacts from the newly discovered side-effects against the impacts from rapid warming. An
example is shown in figure 7; clearly, any warming rate can be imposed, with consequences on
how much longer some level of SRM would still be required.

3. Methods
Simulations herein use the HadCM3L fully coupled atmosphere–ocean general circulation model
[29], forced by different RCPs [22,23]. HadCM3L has a climate sensitivity of approximately 3.2◦C,
similar to the 3.4◦C average of the more current CMIP5 models [30]; it is thus well suited
to give a reasonable mid-range estimate of global mean-temperature response. The transient
response of the global mean temperature in HadCM3L is quite well captured by either a semi-
infinite diffusion model [31] or a box-diffusion model [4]; this is also consistent with the dynamic
behaviour of most of the CMIP5 models [32].

The box-diffusion model relates perturbations in surface temperature T(t) in response to
radiative forcing perturbation F(t) via

C
dT
dt

= F − λT + β
∂Td

∂z

∣∣∣∣
z=0

(3.1)
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Figure 4. Rate of temperature change at grid-scale in HadCM3L for RCP 4.5 over a 30 year period from 2020 to 2050 without
solar geoengineering (a) and with solar geoengineering either to maintain constant global mean temperature (b) or to limit
global mean temperature warming to 0.1◦C per decade (c). Slopes are estimated using a linear least-squares fit and averaged
over five ensemblemembers. The local rate of change of temperature can still bemuch larger than the globalmean rate, but for
the 0.1◦C per decade case, is reduced in most places with SRMwhen compared with no SRM. Using SRM tomaintain a constant
globalmean temperature despite increasing greenhouse gas concentrations results in some regionswarming and some cooling,
so that the average rate of change is zero. The grid-scale rate of change is not statistically significant everywhere (see electronic
supplemental material, figure S2). (Online version in colour.)

and
∂Td

∂t
= κ

∂2Td

∂z2 , (3.2)

with deep ocean temperature Td(z, t) and boundary condition Td(0, t) = T(0, t) (taking the top of
the deep ocean as z = 0). Closed-form solutions for T(t) can be obtained from Laplace transforms
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Figure 5. The duration (a) and peak amount (b) of solar geoengineering that would be required to constrain the rate of change
of temperature, for different RCP emission pathways. Values for these metrics are significantly larger for RCP 8.5 than for other
pathways; the arrow indicates a value above the plotted range. If the SRM is used tomaintain a constant temperature (zero rate
of change), the maximum solar reduction is finite for each RCP, but the duration is only finite for RCP 2.6 (indicated by ‘×’ for
other RCPs). Results are calculated using a box-diffusion model tuned to match HadCM3L behaviour. Values also given in the
electronic supplementary material, table S1. (Online version in colour.)

as in [4]; it is straightforward given this ‘forward’ solution to compute the ‘inverse’ solution
of finding a forcing trajectory over time F(t) that yields any desired temperature trajectory
T(t). The parameter λ describes the natural climate feedback (the change in radiation due to a
change in surface temperature), C = cρH is the surface layer heat capacity per unit area, κ is the
thermal diffusivity and β = cρκ for density ρ and specific heat capacity c. The time constants
of this model can be obtained from a fit to the frequency-dependent response of HadCM3L as in
MacMartin et al. [4]; this frequency response was previously calculated by simulating the response
to sinusoidal variations in the solar ‘constant’ at different frequencies [31]. These simulations give
the HadCM3L response to solar forcing; to account for the difference in efficacy of solar forcing
relative to CO2, the result is scaled to match the HadCM3L response to RCPs.

This box-diffusion model is used here for two purposes. First, for calculating the length of time
and the amount of solar reduction required for a given RCP emissions pathway and allowable
rate of change in figures 5 and 6; the resulting estimates are reasonable proxies for the response
of the HadCM3L GCM but more efficient to calculate. Note that computing the solar reduction
that yields temperatures T(t) requires a dynamic inverse model, such as the box-diffusion model
used here. Second, this simple model is also used for providing an initial estimate for HadCM3L
simulations of the solar reductions required; these are subsequently corrected using feedback.
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Figure 6. Dependence on climate sensitivity for using solar geoengineering to limit the rate of change of global mean
temperature to 0.1◦C per decade showing number of years that would be required (a) and maximum solar reduction required
(b). Results for RCP 8.5 are off the scale for all climate sensitivities shown here. The ‘likely’ range of climate sensitivity of 2–4.5◦C
per doubling of CO2 [24] is shaded; HadCM3L sensitivity used in other figures is 3.2◦C for a doubling of CO2, roughly in themiddle
of this range. (Online version in colour.)

As noted earlier, because feedback is being used, only a very simple model is needed for this
purpose; the estimated solar reduction would not be more accurate if one or more GCMs were
instead used for this purpose. Indeed, our simple model is tuned to reproduce the GCM response
more accurately than might be possible in a real implementation. (This depends on how good
climate models become in the future.)

With the well-tuned box-diffusion model, then, in our simulations, feedback would only be
required to correct for nonlinearity in the RCP 8.5 simulation. However, we use feedback in all
HadCM3L simulations regardless, in order to better represent the situation that would be faced
in a real implementation. Once feedback is used, the resulting behaviour is relatively insensitive
to significant model error [5], and so choosing a more accurate prediction model does not affect
our HadCM3L simulations (i.e. a less accurate prediction model would lead to similar behaviour
as the errors would be corrected through the use of feedback). We choose to accurately tune the
box-diffusion model here, so that the same model can be used as an efficient proxy for the full
HadCM3L simulation in the parametric calculations.

We use reduction in solar intensity as a proxy for any SRM method. In HadCM3L
simulations with SRM, we adjust the reduction in solar intensity using feedback of the ‘observed’
(i.e. simulated by HadCM3L) global mean temperature in order to track the specified target
temperature as a function of time, despite model uncertainty. We use a proportional–integral (PI)
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Figure 7. Illustration of gradual phase-out of a solar geoengineering deployment, in contrast with a sudden termination. The
gradual phase-out uses feedback to limit warming to 0.5◦C per decade. (a) The simulated global mean temperature response
in HadCM3L and (b) the corresponding solar reduction as in figure 2. The feedback case initiates SRM in 2020 with the goal of
maintaining global mean temperature constant at 2020 levels, and is either suddenly terminated or gradually phased out after
50 years (2070), when the temperature difference relative to the case without SRM is roughly 1.5◦C. The sudden termination
results in a rapid warming of more than 1◦C in the first 5 years; the gradual phase-out example shown here spreads the overall
warming out over 25 years. (Online version in colour.)

controller [4] to compensate for errors in the estimated solar reduction versus time. The solar
reduction Sk+1 to apply in year k + 1 is calculated from the ‘observed’ temperature Tk in year k as

Sk+1 = S∗
k+1 + Kp(Tk − T∗

k ) + KI

k∑

n=0

(Tn − T∗
n), (3.3)

where S∗
k is the predicted value estimated from the box-diffusion model and T∗

k is the ‘target’
temperature in year k corresponding to the specified maximum rate of change. We chose integral
and proportional gains of KP = 0.5 and KI = 0.25 in units of % solar per ◦C; these values give a
time-constant of about 5 years for the feedback to respond to an error [4]. Note that a consequence
of using feedback is that the applied solar reduction is ‘noisy’. The response to natural variability
is an unavoidable result of using feedback to adjust forcing. The feedback gains can be chosen to
trade off this response to natural variability against the accuracy of tracking the chosen reference
trajectory: higher gains increase accuracy at the expense of volatility; we make no claim that the
gain values used here are the best choice for this trade.

Reference or target trajectories for the global mean temperature are defined here starting in
2020 (arbitrarily chosen) and increasing at a constant rate. Of course, this approach could be used
to follow any temperature profile. The box-diffusion curves in figures 2, 3 and 7 compute the
radiative forcing required to obtain this temperature trajectory, constrain the radiative forcing to
be negative or zero, and compute the resulting feasible temperature trajectory for the system.
Note that the resulting predicted length of SRM deployment is slightly shorter than the shaded
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region in figure 1 owing to climate inertia: solar reductions can be tapered off slightly earlier than
figure 1 would suggest as the climate warms at less than the specified rate once the temperature
is sufficiently close to the value it would have been if there was no solar reduction.

4. Discussion
Carbon dioxide released to the atmosphere can affect the Earth’s climate for millennia [33], thus
in the absence of methods used to accelerate the removal of CO2 from the atmosphere, CO2
emissions commit us to millennia of altered climate. Using solar geoengineering to hold global
mean temperature constant would thus require that its deployment be sustained for a long time,
dependent on this residence time. (The residence time of aerosols in the stratosphere is only a year
or 2 [34]; the millennial-scale commitment is associated with carbon dioxide, not stratospheric
aerosols or other means to reduce solar forcing.)

However, solar geoengineering technologies could instead be used only to limit the rate of
change of global mean temperature to some chosen maximum value. This would only require
a temporary solar geoengineering deployment, yet would still reduce those impacts of climate
change which are rate dependent. In particular, using SRM to limit the rate of temperature change
would provide more time for both ecosystems and human systems to adapt to climate changes.
Any temperature-dependent impacts would of course only be delayed, not avoided, and the
resulting impact of this delay on CO2 emissions mitigation is unclear.

Increasing the maximum allowable rate of change reduces both the length of time and the
amount of solar geoengineering that would be required to maintain this rate. Reducing the
amount of solar reduction in a deployment would reduce risks associated with the technology
used (e.g. ozone depletion)—and less solar reduction is required if using solar geoengineering
only to limit the rate of change rather than to hold the global mean temperature approximately
constant. In an ideal world, the rate of change might, in principle, be chosen to balance undesired
impacts from the solar geoengineering deployment against the damages associated with a
changing climate. While the use of solar geoengineering to reduce only rates and not amounts
of climate change greatly reduces the duration of the required deployment, the time horizons are
still long in comparison with most policy commitments. Figure 5 makes it clear that the emissions
pathway that is followed has a substantial impact on both how much and how long solar
geoengineering would need to be deployed in order to limit the rate of change of temperature
to some given value.

The motivation to deploy solar geoengineering would presumably be to reduce environmental
risk. However, it could be the case that it is not successful at reducing environmental risk, and thus
there would be a motivation to terminate the deployment—but a sudden termination might be
riskier than continued deployment. We have also shown here that, were this situation to occur, the
range of choices would not be confined to the binary choice of terminate or continue deployment,
but that there is the possibility of choosing to phase out a deployment at whatever rate might best
reduce overall risk and damage.

In this work, we have used a highly schematic climate model to estimate the change in amount
of geoengineering that would be needed to attain a target rate of temperature increase in a
more complicated three-dimensional climate model, with the amount of geoengineering then
further adjusted using feedback. The implication is that the relationship between the schematic
model and the full three-dimensional climate model is analogous to the relationship between
modern three-dimensional Earth system models and the real Earth in this important respect:
in each case, the model used is a simpler and imperfect representation of the more complex
system. Our study shows that the model used to estimate required change need not be highly
sophisticated or very accurate to achieve a high level of control, because model errors are in large
part compensated for by the feedback process. Better models might permit better control, but a
high degree of control does not depend on having a model with a high degree of fidelity to the
real world.
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