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Solar geoengineering refers to deliberately reducing
net radiative forcing by reflecting some sunlight
back to space, in order to reduce anthropogenic
climate changes; a possible such approach would
be adding aerosols to the stratosphere. If future
mitigation proves insufficient to limit the rise in
global mean temperature to less than 1.5◦C above
preindustrial, it is plausible that some additional and
limited deployment of solar geoengineering could
reduce climate damages. That is, these approaches
could eventually be considered as part of an
overall strategy to manage the risks of climate
change, combining emissions reduction, net-negative
emissions technologies and solar geoengineering to
meet climate goals. We first provide a physical-
science review of current research, research trends
and some of the key gaps in knowledge that
would need to be addressed to support informed
decisions. Next, since few climate model simulations
have considered these limited-deployment scenarios,
we synthesize prior results to assess the projected
response if solar geoengineering were used to limit
global mean temperature to 1.5◦C above preindustrial
in an overshoot scenario that would otherwise peak
near 3◦C. While there are some important differences,
the resulting climate is closer in many respects to a
climate where the 1.5◦C target is achieved through
mitigation alone than either is to the 3◦C climate
with no geoengineering. This holds for both regional
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temperature and precipitation changes; indeed, there are no regions where a majority of
models project that this moderate level of geoengineering would produce a statistically
significant shift in precipitation further away from preindustrial levels.

This article is part of the theme issue ‘The Paris Agreement: understanding the physical and
social challenges for a warming world of 1.5◦C above pre-industrial levels’.

1. Introduction
The Paris agreement included the specific goal of ‘holding the increase in the global average
temperature to well below 2◦C above preindustrial levels and to pursue efforts to limit the
temperature increase to 1.5◦C’ [1]. However, while there are emission scenario analyses that yield
a 50% chance of meeting the 1.5◦C goal [2,3], these pathways require near-immediate reduction
to net-zero emissions. By contrast, current commitments to future mitigation of CO2 emissions
are projected to result in warming closer to 3◦C [4]. Approaches for ‘net-negative emissions’
carbon dioxide removal (CDR) [5] are already embedded in future emissions scenarios [6],
although potentially at unrealistic scale [7,8]. Nonetheless, these technologies might eventually
bring the temperature rise back below 1.5◦C but only after a possibly lengthy period of
overshoot [9].

Given this context, solar geoengineering (or solar radiation management, SRM) could be
considered as a possible supplement to other tools for managing long-term climate damages and
risks [10–13] as illustrated qualitatively in figure 1. The purpose of solar geoengineering is to
reduce climate changes by reflecting some sunlight back to space. The most frequently discussed
approach is to inject aerosols or their precursors (e.g. SO2) into the stratosphere [14]; the same
mechanism by which large volcanic eruptions cool the planet. Another approach is marine cloud
brightening (MCB), which aims to increase cloud albedo through injection of sea-salt aerosols [15];
the effectiveness of this is less certain. Other techniques have also been proposed, from space-
based [16], that are likely too expensive, to land- or ocean-albedo modification [17,18], that
are either less scalable, have other environmental concerns (such as adding surfactants to the
ocean), or are simply less well studied. An additional approach that shares some similar features
is to deliberately thin cirrus clouds and hence increase outgoing long-wave radiation [19]; the
effectiveness of this approach is even more uncertain [20]. For each of the key approaches, table 1
summarizes the confidence level in being able to achieve useful radiative forcing, and advantages
and disadvantages.

While these approaches can reduce the global mean temperature, the resulting climate is not
the same as one with the same global mean temperature but achieved through mitigation alone;
some of these differences will be explored in §3. However, unlike mitigation, solar geoengineering
would affect the climate quickly, and thus could provide a unique additional tool for managing
climate change. The amount and duration of a solar geoengineering deployment required to
maintain a specific target such as 1.5◦C is directly related to the characteristics of temperature
overshoot [9]. Reducing the cumulative anthropogenic greenhouse gas (GHG) emissions would
reduce the peak amount of such a deployment, while long-term net-negative emissions would
limit the duration of overshoot and hence deployment.

Mitigation remains essential. Solar geoengineering would not compensate all climate damages
(e.g. ocean acidification), and the risks and side effects of geoengineering will increase with the
amount used [22]. Further, while several degrees of cooling are almost certain to be achievable for
some approaches (table 1), the maximum cooling potential is unclear. And finally, even moderate
deployment imposes a constraint on future generations to either maintain the deployment or
accept the consequences of phasing it out. In the absence of strong mitigation the duration of
elevated atmospheric CO2 concentrations could be substantial.

The climate sensitivity to increased atmospheric CO2 concentrations is uncertain [23], so while
the best estimate for the increase in global temperature rises in close proportion to cumulative



3

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20160454

.........................................................

time

cl
im

at
e 

im
pa

ct
s

business
as usual

CO2
removal

cut emissions
aggressively

solar
geoengineering?

Figure 1. Reducing greenhouse gas emissions, combined with future large-scale atmospheric CO2 removal (CDR), may lead
to long-term climate stabilization, but with some potentially significant overshoot of desired temperature targets. There is
thus a possible role for limited and temporary solar geoengineering as part of an overall strategy to reduce climate impacts
during the overshoot period. (Solar geoengineering as an alternative to mitigation would require extremely large forcing to
be sustained for millennia, and is thus not necessarily realistic or advisable.) This graph, adapted from [10], represents climate
impacts conceptually, not quantitatively; see figure 3 for a specific representative scenario. (Online version in colour.)

Table 1. Summary of solar geoengineering options, confidence in ability to produce radiative forcing (RF), key advantages and
disadvantages relative to stratospheric sulfate. Any solar geoengineering approach will introduce additional concerns, e.g. [21].

confidence that substantial
global�RF (e.g.> 3 Wm−2) disadvantages relative

method is achievable advantages to stratospheric sulfate
stratospheric
sulfates

very high: current technologies can
likely be adapted to loft
materials and disperse SO2 at
relevant scales

similarity to volcanic
sulfate gives empirical
basis for estimating
efficacy and risks

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

other stratospheric
aerosols

moderate: depends on aerosol,
lofting similar to sulfate but
aerosol dispersal much more
uncertain

some solid aerosols may
have less strat. heating
and minimal ozone loss

harder to bound
uncertainty since not
naturally occurring in
stratosphere

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

marine cloud
brightening

uncertain: observations support
wide range of CCN impact on
albedo; substantial process
uncertainty

ability to make local
alterations of albedo;
and modulate on short
timescales.

only applicable on marine
stratus covering
approximately 10% of
the Earth means RF
inherently patchy

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cirrus thinning uncertain: deep uncertainty about
fraction of cirrus strongly
dependent on homogeneous
nucleation; no studies
examining diffusion of CCN

works on longwave
radiation so could
provide better
compensation

maximum potential
cooling limited; zonal
distribution of RF
constrained by
distribution of cirrus

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

space based low physical uncertainty, but deep
technological uncertainties

possibility of near ‘perfect’
alteration of solar
constant

substantially more
expensive

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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emissions [24], there is substantial uncertainty for any particular emissions pathway. The 1.5◦C
target has been operationally interpreted as an emissions pathway that meets 1.5◦C with some
probability, often 50% or 66% [4] (although a probability is not specified in the Paris agreement).
Thus, in addition to providing a possible option for supplementing mitigation trajectories that
are insufficient to meet the 1.5◦C goal, the ability to implement solar geoengineering if needed
appears to be the only way to be certain of limiting global average temperature increases to 1.5◦C
even if emissions follow proposed 1.5◦C-consistent pathways.

The prospect of using solar geoengineering to supplement more conventional climate risk
mitigation in reaching a temperature target highlights the fact that global mean temperature
is simply a proxy for a broad collection of climate impacts [25]. It is plausible that solar
geoengineering could meet a temperature target while failing to reduce many of the specific
climate risks that are the implicit goal of any such global temperature target.

Based on current knowledge it seems likely that solar geoengineering could reduce many
climate risks for most people [26]. However, current knowledge about the climate response
and impacts is insufficient to support an informed decision (e.g. [13,27–29]). Furthermore,
even if analysis demonstrated a reduction in aggregate climate damages, there are additional
ethical concerns such as distributional issues (e.g. [30,31]; these lead to arguments both for
and against deployment) and socio-political risks that include the difficulties of governance
[32–35], the potential for conflict and the potential for a geoengineering deployment to impact the
commitment to mitigation [36]. There are additional societal concerns surrounding the research
itself [37]. We briefly review what is known in the next section, with a particular focus on recent
research results, trends and open questions. Additional details can be found in a number of recent
reviews of solar geoengineering [30,38–41].

Section 3 then assesses the projected climate response of solar geoengineering in the context
of a limited deployment aimed at avoiding an increase in global mean temperature above 1.5◦C
in the presence of mitigation that would otherwise result in a 2.5–3◦C temperature rise, including
both a representative quantification of figure 1 as well as projections of regional temperature and
precipitation impacts. Many geoengineering simulations to date have been designed primarily to
understand how models respond differently to different types of radiative forcing, rather than
to simulate representative future deployment scenarios—which could lead to misinterpreting
the results as being representative of any geoengineering deployment strategy; one exception
that simulates geoengineering in an overshoot scenario is Tilmes et al. [42]. The projection in §3
relies on existing climate model simulations, using a dynamic climate emulator [43] to predict the
climate response for different forcing trajectories.

2. The state of knowledge
Supporting an informed decision regarding responsible deployment of any form of solar
geoengineering would presumably require at least (i) an assessment of the best estimate for
the climate response and associated human and ecosystem impacts associated with different
deployment choices, as well as (ii) an assessment of the confidence in those estimates. In addition
to these physical-science inputs that we primarily focus on here, a responsible decision would
also need to understand socio-political ramifications including expected governance.

Numerous climate model simulations of solar geoengineering have been conducted, either
with an idealized reduction of the solar constant or using simulations of specific approaches.
Some general characteristics of the expected response to any form of solar geoengineering can
be assessed from the former; this case also allows for straightforward multi-model comparisons
(as in the Geoengineering Model Intercomparison Project; GeoMIP [44,45]) since the identical
simulation can be conducted in each model.

A reduction in sunlight would cool the planet everywhere, though not with the same spatial
or seasonal pattern as the warming due to increased GHG, both due to the different mechanism
of radiative forcing and the different spatial distribution of radiative forcing. For example, a robust
result from climate model simulations of either insolation reduction [45,46] or tropical aerosol
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injection is an overcooling of the tropics and undercooling of the poles (i.e. less polar amplification
than occurs for GHG-warming), due to the spatial pattern of insolation. This has consequences
beyond simply spatial differences in the fraction of CO2-warming offset by a given level of solar
reduction; for example, the change in equator-to-pole temperature gradients in these simulations
yields a shift in the mid-latitude storm track [47].

A second broad conclusion regards precipitation changes. The warming due to increased
greenhouse gases has two counteracting influences on precipitation. A warmer world holds
more moisture, increasing the strength of the hydrological cycle. At the same time, increased
atmospheric GHG concentrations warm the entire troposphere, increasing stability and reducing
convection; this ‘fast’ response [48] is thus of opposite sign to the ‘slow’ response due to warming.
Transpiration also decreases with increases in CO2, further reducing precipitation [49]. Cooling
the planet through a solar reduction counteracts the expected increase in precipitation from the
temperature-dependent ‘slow’ response, but because of the different mechanism of radiative
forcing, does not compensate for the ‘fast’ responses. As a result, a robust expectation from any
solar geoengineering approach is that it results in less global mean precipitation for a given global
mean temperature than if the same temperature were achieved through mitigation alone [50,51].
One consequence of this is that using solar geoengineering to return temperatures back to
preindustrial levels will overcompensate precipitation, and will almost certainly not represent
an optimum balancing of risks [22,26].

Based on the above observations, care should be taken in interpreting projected climate
responses from solar reduction simulations, for three reasons. First, any specific approach such
as stratospheric aerosol injection (SAI) will impact the climate differently from a solar reduction.
(Although comparisons [47,52–54] can be difficult to interpret due to uncertainty as to which
differences result from the different mechanism of radiative forcing, and which are due to the
different spatial distribution.) Second, many simulations have compensated all of the global mean
temperature rise due to increased atmospheric CO2 (e.g. GeoMIP scenarios G1 and G2 [44]),
resulting in overcooling in some regions and overcompensation of precipitation changes. These
simulation results can still be useful provided they are scaled to more representative scenarios, as
in §3.

The third and more subtle reason for care in evaluating current simulations is that the
impacts will depend on design choices such as the latitude at which to inject aerosols into the
stratosphere: simulations with a uniform solar reduction or with equatorial aerosol injection
may result in climate outcomes that would be avoidable through different choices. The
dominant residual temperature pattern of overcooling the tropics and undercooling the poles
is due to the different zonal distribution of radiative forcing. However, since the stratospheric
Brewer–Dobson circulation is broadly poleward, aerosol injection away from the tropics can
be used to increase aerosol concentrations at higher latitudes [55,56], reducing or eliminating
differences in the equator to pole temperature gradients [57]. Similarly, altering the injection
amount separately in each hemisphere [57] can minimize shifts in the intertropical convergence
zone and associated tropical precipitation impacts [58]. That is, a fundamental feature of
solar geoengineering is that it is a design problem [59–62]. The extent to which it can be
designed to better manage climate outcomes is as yet unknown, and thus how well solar
geoengineering could compensate for tropospheric climate effects of increased atmospheric
GHGs is still uncertain.

Specific technical approaches for solar geoengineering will have different impacts.
Stratospheric aerosols both scatter and absorb, heating the stratosphere and affecting

stratospheric dynamics and water vapour concentrations [47,63–65], which in turn influence
surface climate [47]. Aerosols also affect stratospheric ozone chemistry [66–69], though as
stratospheric chlorine concentrations recover the aerosol impact on ozone concentrations will
decrease [70]. These effects depend on the latitude, altitude and season where aerosols are
injected [65]. While sulfate is often assumed, different aerosols could be chosen that have less
stratospheric heating and associated impact on dynamics [47,71] or that might reverse the sign of
the effect on ozone [72]. Furthermore, many of the earlier SAI simulations do not include some
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potentially relevant physical processes (e.g. table 2 in [67]). Climate models are now capable of
simultaneously capturing aerosol microphysics, interactions with stratospheric chemistry, and
coupling with stratospheric dynamics in a fully coupled model [73,74].

MCB [15] involves injecting sea-salt aerosols into marine boundary layer clouds in order to
increase cloud albedo through the indirect aerosol effect. This would affect the climate differently
from SAI [52]. Cloud–aerosol interactions, however, are one of the largest areas of uncertainty in
climate change, and it is unclear over what fraction of the ocean MCB might be effective. While the
radiative forcing from stratospheric aerosols is potentially relatively uniform in space and time,
MCB would create spatially heterogeneous forcing and potentially more spatially heterogeneous
climate effects. This could have both advantages and disadvantages in the ability to compensate
for the regional pattern of climate changes from CO2; indeed a combination of SAI and MCB
might lead to improved outcomes.

Uncertainty is clearly a significant concern. Conceptually this can be separated into uncertainty
in the processes that result in a (negative) radiative forcing, and uncertainty in how the climate
then responds to that forcing. While not strictly separable, this conceptualization is valuable for
making judgements about the extent to which uncertainty might be resolvable.

Uncertainty in individual processes, such as aerosol microphysical growth assumptions or
chemical reaction rates in the case of stratospheric aerosols, can in principle be reduced through
small-scale process-level field experiments [75,76] and/or better observations after future large
volcanic eruptions [77]; cloud–aerosol interactions underpinning MCB could also be tested
at relatively small scale [78]. Indeed, conducting these process experiments would have co-
benefits for climate science [79], complementing observations (e.g. [80]). Furthermore, if, for
example, stratospheric aerosol geoengineering were deployed, the aerosol properties—their size
and spatial distribution—could be measured, and the injection rate adjusted in response to any
differences between predictions and observations; this might allow the desired radiative forcing
to be produced despite some amount of process uncertainty.

However, an experiment to measure the regional climate response to geoengineering would
require substantial forcing and/or considerable time [81]. As a result, there will always be
some uncertainty in the regional climate projections prior to deployment, just as there remains
uncertainty today in the response to increased GHG concentrations [23]. Indeed, the primary
source of uncertainty is the same—uncertainty in the strength of regional feedbacks that
largely determine the regional climate responses. At least for a solar reduction, the spread
across model predictions is reduced with moderate geoengineering rather than increased [82].
Maintaining global mean temperature at 1.5◦C using solar geoengineering could arguably
reduce some uncertainties regarding future climate changes relative to the same emissions
trajectory without solar geoengineering. A feedback process, similar to that described above
for modifying the strategy in response to observed aerosol properties, might also be used to
maintain global mean temperature [83] or several degrees of freedom of the spatial pattern of
temperature [57,61].

Further research is required to address a number of issues raised above. This includes,
for example, (i) taking a design perspective to ask what climate outcomes are or are
not achievable through different choices, (ii) translating climate response into impacts
assessment—how might geoengineering influence specific risks, and (iii) reducing uncertainties
through observations and field experiments, and understanding how one might manage
irreducible uncertainties.

There is also significant research in geoengineering beyond the physical climate science
summarized above. This includes evaluations of the ethics of climate intervention, social science
to better understand how different publics might respond to the idea [84], and research aimed
at building necessary governance. Just as the climate science implications of geoengineering are
at least somewhat contingent on assumptions about how geoengineering is used—whether it is a
limited supplement to aggressive mitigation policy or portrayed as a substitute—the ethics, social
science and governance conclusions will also depend on the framing. Substantially, more research
will also be required in all of these areas over the coming decades.
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Figure 2. Representative scenarios used in figures 3–6. (a) CO2-equivalent (CO2e) for representative concentration pathway
RCP8.5 (representing a business-as-usual (BAU) scenario), RCP4.5 (to represent mitigation) and RCP4.5 augmented with
significant levels of long-term CO2 removal (+CDR) sufficient to reduce concentrations by 1 ppm yr−1. The solar reduction
(+SRM) used in figure 3 is shown in b. For simplicity, the carbon-cycle feedbacks between the reduced temperatures associated
with using solar geoengineering and resulting CO2 concentrations is ignored. (Online version in colour.)

3. Projected climate response for 1.5◦C
(a) A portfolio of options
To illustrate how solar geoengineering could be used as part of an overall strategic approach to
manage climate risk, we start by defining a set of hypothetical scenarios: (i) following the RCP8.5
representative concentration pathway [85] to illustrate the no-mitigation, business-as-usual,
baseline, (ii) following the RCP4.5 pathway to illustrate responses to a robust mitigation effort,
(iii) the RCP4.5 pathway augmented with sufficient CDR to reduce atmospheric concentrations
at 1 ppm yr−1, leading to a peak warming of approximately 2.7◦C in our projection (figure 3) and
(iv) this augmented-RCP4.5 pathway, but with sufficient solar geoengineering to maintain global
mean temperature rise to no more than 1.5◦C; for simplicity, we ignore potentially non-negligible
carbon-cycle feedbacks that would reduce the CO2 concentrations if temperatures were reduced
through solar geoengineering [86]. The concentrations (expressed in CO2e) and required solar
reduction are shown in figure 2.
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While the RCP4.5 pathway considered here already includes some CDR [87], its emissions
fall well within the range of emissions in scenarios of the Intergovernmental Panel on Climate
Change (IPCC) Working Group 3 database [88] after negative emissions are excluded (electronic
supplementary material, Figure S5). The augmented CDR pathway assumed here is deliberately
arbitrary for illustration purposes only. We use a sigmoidal ramp-up (as in [9]) from 2050 to
2100 to a sustained rate defined through its impact on concentration (electronic supplementary
material, Figure S4). A reduction of 1 ppm yr−1 would require reducing atmospheric CO2 by
7.8 Gt yr−1. Approximately, half of anthropogenic CO2 emissions are currently absorbed by the
oceans and biosphere, and the same processes would operate in reverse [89], so that this level of
reduction might require of order 15 Gt CDR and storage per year with more precise quantification
dependent on uncertainties in the carbon cycle model. This rate is near the high end considered
in the working group 3 database [9,90], and higher than some estimates that evaluate terrestrial
biomass potential [91–93]. Higher or lower removal rates will result in shorter or longer overshoot
of 1.5◦C, respectively.

We estimate the global mean response to these scenarios first, and the regional response in §3b;
these rely on climate emulators tuned to match the response of 12 climate models participating in
GeoMIP, see appendix A and the electronic supplementary material.

While solar geoengineering could maintain temperature at 1.5◦C, not all climate variables will
respond the same way. Some variables will be more strongly affected (global mean precipitation
will be restored even closer to preindustrial than global mean temperature), while others
would be under-compensated or exacerbated (e.g. ocean acidity will not be strongly affected by
geoengineering; stratospheric ozone loss would be made worse if stratospheric sulfate aerosols
are used for cooling). This principle is illustrated in figure 3(a–c), which shows global mean
temperature, global mean precipitation and tropical aragonite saturation state under our four
pathways. With each additional climate risk mitigation tool, global temperatures are decreased
and, finally, solar geoengineering is used to stabilize global temperature. Global precipitation
is proportionally restored with mitigation and CDR, but the addition of solar geoengineering
reduces precipitation faster than it cools. On the other hand, because surface ocean carbonate
chemistry is more sensitive to atmospheric concentrations of CO2 than to changes in surface
air temperature, solar geoengineering has little effect on ocean acidification. Tropical aragonite
saturation state (ΩA), an important proxy for viability of calcifying organisms, is illustrated for
the four pathways in figure 3(c). Solar geoengineering has a small exacerbating effect on ΩA here
due to cooler temperatures and our assumed identical atmospheric CO2 concentrations; the sign
of the effect might change with a carbon-cycle model that accounts for the impact of temperature
on CO2. The way that temperature, precipitation and other effects interact to cause impacts is not
necessarily obvious. In the case of coral bleaching, cooler sea surface temperatures have a much
greater effect reducing bleaching than reduced ΩA increases it [94]; in the case of agricultural
impacts, for example while solar geoengineering tends to decrease precipitation, in combination
with cooler temperatures and high atmospheric CO2, simulations have shown a net positive effect
on crop yields [95].

The climate changes induced by increased GHG concentrations are complex, but because the
impacts typically increase with the global mean temperature, a single number such as 1.5◦C or
2◦C can be a proxy for a wide collection of climate impacts, with the climate impacts of 1.5 being
less than those corresponding to 2◦C (although there may be other trade-offs in choosing a target).
Since geoengineering would not affect the climate the same way, a lower global mean temperature
anomaly achieved using geoengineering does not necessarily lead to lower aggregate climate
risks. Choosing an appropriate level that balances different risks to the climate system will not be
straightforward.

The peak level of solar geoengineering in figure 2 is approximately 1.7 W m−2. For context,
with SAI this would require of order 3 Tg S yr−1 if injected as H2SO4 [96] and 5 Tg S or more if
SO2 were injected instead (the most commonly simulated approach); the latter is consistent for
example with the 10 Tg yr−1 of SO2 found by Kravitz et al. [57] per degree of cooling. Efficacy
uncertainty for MCB is currently too high to compute similar estimates.
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Figure 3. Not all climate variables respond to solar geoengineering the same way. The global-mean temperature (a), global
mean precipitation (b) and tropical aragonite saturation state (c) are shown for the cases in figure 2: RCP8.5 (BAU), RCP4.5
(+mitigation), RCP4.5 augmented with long-term CO2 removal (+CDR) and RCP4.5, CDR, and sufficient solar geoengineering
to maintain temperature at 1.5◦C (+SRM). SRM acts quickly while CDR acts slowly: in this scenario, the compensation of
climate change due to CO2 emissions is primarily due to SRM in 2100; by 2200 both SRM and CDR contribute. Temperature
and precipitation responses are estimated from median of 12 models participating in GeoMIP and aragonite saturation state
responses are estimated from Kwiatkowski et al. [94] (see appendix A; the electronic supplementary material). (Online version
in colour.)
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Figure 4. Uncertainty in climate sensitivity results in a range of temperature outcomes for a given CO2-concentration pathway;
the multi-model median response and range across the 12 models considered here is shown for the case with long-term
CO2 removal both with and without solar geoengineering. (a) Solar geoengineering could be used to achieve a 1.5◦C target
independent of climate sensitivity uncertainty. (b) The range of forcing from solar geoengineering across the 12models and from
CO2e; analysis uses % solar reduction and concentration, respectively, but these are plotted as approximate radiative forcing to
enable comparison between them. CO2 forcing is estimated as 5.35 times the log of the concentration change. Because of the
short timescales associated with solar geoengineering, uncertainty in climate response can be compensated for with control
over solar geoengineering forcing. (Online version in colour.)

Figure 3 illustrates the median projected response across 12 models. However, an important
feature of climate change projections is the uncertainty in climate sensitivity. Figure 4 shows
the range of temperature response and forcings across the 12 models considered both with and
without geoengineering, assuming that the amount of geoengineering is adjusted to maintain the
1.5◦C target in each model. Because of the short timescales between implementation and effect,
solar geoengineering would also increase the certainty of being able to achieve a target.

We next turn to an assessment of the regional response to geoengineering used to maintain a
1.5◦C target, using the same hypothetical mitigation, CDR and solar geoengineering scenarios.
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(b) Regional climate response
As in §3a, rather than conducting new simulations of geoengineering specific to a 1.5◦C global
mean temperature target, we rely on a climate emulator to project the response based on existing
climate simulations, using the same 12 GeoMIP climate models’ response to a solar reduction.
The regional projection is based on the emulator developed and verified in [43] (see appendix A);
this relies on an assumption of linearity, which has been validated to be a good approximation
for many, but not all variables. Because of the observation made earlier regarding both the
mechanism and spatial pattern of radiative forcing, the regional response predictions should
be interpreted cautiously; we chose this set of models because it provides an opportunity to
assess inter-model robustness. The only geoengineering simulation we are aware of that uses
a similar scenario is [42] in which stratospheric sulfur injections are used to maintain global mean
temperature near 2◦C in an overshoot scenario that would otherwise peak near 3◦C; their results
are broadly consistent with results here in that their geoengineered climate is more similar to a
2◦C climate achieved through mitigation alone than either are to the 3◦C climate.

Figure 5 compares three different cases: an end-of-century (2091–2110) warming of
approximately 2.7◦C achieved through mitigation alone (the RCP4.5+CDR case in figures 2
and 3), the same time period but with solar geoengineering to maintain a 1.5◦C target, and
for comparison the average over 2019–2038 chosen so that the global mean temperature rise
is 1.5◦C but due only to increased GHG concentrations. The area-averaged root mean squared
(RMS) temperature difference between the two 1.5◦C climates is only 0.1◦C, while the RMS
difference between either of these and the 2.7◦C climate is 1.2◦C. The RMS precipitation
difference between the two 1.5◦C climates is 2.3%, while either 1.5◦C case has approximately
8% RMS precipitation difference compared with the 2.7◦C un-geoengineered climate. Electronic
supplementary material, Figures S6–S8 also show the extent (or lack) of model agreement,
comparing the 1.5◦C-geoengineered case to either the 2.7◦C no-geoengineering end-of-century
case (all models show cooling everywhere), to the preindustrial (all models show warming
everywhere) and to the 1.5◦C case due to increased GHG alone. For this last case, the
dominant difference in the geoengineered temperature pattern is the relatively cooler tropics and
warmer high latitudes compared with the GHG-alone case that is an artefact of the choice of
simulations used here. There is generally less model agreement for precipitation responses than
for temperature (although this is also true for the CO2 warming alone).

While the limited deployment of geoengineering considered here results in every location
being closer to preindustrial temperature with than without geoengineering, of particular
concern is whether there may be places where increased GHG leads to a reduction in precipitation
that is further exacerbated by geoengineering, or where GHG leads to increased precipitation that
is then increased further by geoengineering. There are places in each climate model where this
is true, but these regions are not robust across climate models, as shown in figure 6, consistent
with [97]. If there were less aggressive mitigation, and greater use of solar geoengineering, then
there would be additional places at which the changes were statistically significant. Precipitation
alone is typically not the relevant driver of climate impacts; even if precipitation were further
from preindustrial in some location, reduced temperatures may still lead to a net reduction in
local climate impacts. These results are from climate models, and from simulations that do not
include the full physics of a specific geoengineering approach (such as SAI or MCB). One should
not overinterpret these results; the only conclusion to draw without further research is that it is
plausible based on current model simulations that a limited deployment in addition to mitigation
could lead to a climate much more similar to a 1.5◦C-climate achieved through mitigation than
either is to a 3◦C world.

4. Summary
Solar geoengineering could be used as one element of an overall strategy to manage climate
change damages and risks. Mitigation alone is unlikely to succeed in meeting a target of 1.5◦C
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Figure 5. Projected temperature and precipitation changes relative to preindustrial for the scenarios in figure 2; end-of-century
responsewithout (a) andwith (b) geoengineering, and for comparison thewarming from 2019–2038 (c) where the globalmean
temperature change is 1.5◦C without geoengineering. Each panel also lists the global-mean change in temperature or the %
change in precipitation. Median results are shown over 12 climate models participating in GeoMIP, estimated using a dynamic
climate emulator (see appendix A).

global mean temperature rise above preindustrial, with current commitments projected to lead to
approximately 3◦C warming. Atmospheric CDR is already built into future emissions scenarios,
and over a sufficiently long term (centuries) could in principle reduce CO2 concentrations and
resultant temperatures back below the 1.5◦C target. In the interim, there is a potential role for
solar geoengineering to limit temperature rise and associated climate changes.

Solar geoengineering with stratospheric aerosols is both certain to be able to provide at least
some cooling (by analogy with large volcanic eruptions), and would be relatively straightforward
technologically to implement [98]. Other approaches such as MCB or cirrus cloud thinning require
more research to assess effectiveness. Simulations with climate models suggest that, while a
1.5◦C-climate achieved through a combination of mitigation, CDR and solar geoengineering
is not the same as a 1.5◦C-climate achieved through more aggressive mitigation+CDR alone,
these two are much more similar to each other than either would be to a 3◦C-climate achieved
through mitigation+CDR without any additional solar geoengineering. Maintaining a global
mean temperature rise of 1.5◦C in the presence of less aggressive mitigation would require higher
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Figure 6. Number of models considered here (out of 12) where projected end-of-century precipitation is both further from
preindustrial with geoengineering than it is without, and where the change is statistically significant over a 20-year period
(consistent with the averaging time in figure 5). For temperature, every model is closer to preindustrial everywhere.

levels of solar geoengineering, and would result in larger differences relative to a climate where
1.5◦C was achieved without geoengineering.

From a pure climate-impacts perspective, ignoring economic and other sociopolitical factors,
it is clear that achieving a 1.5◦C target through emissions reduction alone would introduce fewer
risks. (Though meeting this target with a combination of emissions reduction and atmospheric
CDRCO2 removal would also incur impacts that also need serious evaluation.) While solar
geoengineering might become the only available means of meeting the 1.5◦C target, it is not
yet clear whether the benefits would exceed the harms and risks from its deployment, nor,
were it to be deployed, whether 1.5◦C would be an appropriate goal for the deployment.
Uncertainties are currently too large to support informed decisions, and more research is needed
in areas such as climate impacts assessment and assessing and reducing uncertainty. There
are also important factors beyond simply accounting for aggregate climate damages, including
philosophical and ethical concerns, the need for centuries-long governance and concern over the
impact on mitigation trajectories. However, if the 1.5◦C target is exceeded it is plausible based
on current climate model results that some limited amount of solar geoengineering could reduce
climate damages and risks for most people.
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Appendix A
The 12 GeoMIP models used here are listed in the electronic supplementary material, Table S1.
The global mean temperature response of climate models to radiative forcing is well captured by
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heat diffusion into a semi-infinite medium [99–101]; this is validated in electronic supplementary
material, Figure S1 for the models considered here. This allows the temperature for any forcing
pathway to be computed from the impulse response function (IRF) for semi-infinite diffusion. The
median sensitivity of these 12 models is 3.3◦C for a CO2 doubling, slightly higher than the IPCC
central estimate.

The global mean precipitation response to CO2 can be decomposed into a ‘slow’ response
proportional to temperature and a ‘fast’ response proportional to the instantaneous CO2
concentrations. As in [102], we fit the precipitation response of the GeoMIP models to

P = αT + βfCO2 + γ S,

where T is the global mean temperature, fCO2 the radiative forcing from CO2, S > 0 the solar
reduction and the coefficients α > 0, β < 0 and γ > 0 are found from least squares, shown in
electronic supplementary material, Figure S2 for each model. Electronic supplementary material,
Figure S3 verifies that this functional form reasonably predicts precipitation changes in the
GeoMIP models.

Aragonite saturation of the surface ocean is determined primarily by atmospheric CO2
concentrations, but is also sensitive to temperature [94]; the tropical aragonite saturation state
is approximated as

ΩA = a + bCO2 + c(CO2)2 + dT.

The temperature sensitivity is difficult to capture in simulations without solar geoengineering
because of the high correlation between CO2 and temperature. Simulations of RCP4.5 both
with and without solar geoengineering [94] in a model with dynamic ocean biogeochemistry
(HadGEM-ES) were used to derive the temperature coefficient after controlling for atmospheric
CO2. That relationship was then applied to the ensemble median response of ΩA to changes in
atmospheric CO2 using the full ensemble of CMIP5 simulations that included dynamic ocean
biogeochemistry (see [103] for the list of simulations included).

To estimate the regional response for each model, the emulator in [43] first computes empirical
orthogonal functions (EOFs) from the abrupt 4 × CO2 and GeoMIP G1 simulations. (G1 balances
the 4 × CO2 temperature using solar reduction.) The first EOF captures the spatial pattern of the
long-term response to increased CO2, while the next few EOFs describe both differences between
the short- and long-term response to forcing and differences between the response to solar
reduction and CO2 forcing. Only the first three to four EOFs typically have any predictive power;
higher EOFs simply describe natural variability in the simulations used to train the emulator.

As with the global-mean temperature, the response to any forcing scenario can be computed
from the IRF, assuming linearity. An assumption-free IRF can be estimated for the projection
onto each EOF as the time-derivative of the corresponding 4 × CO2 response [43]. There is some
uncertainty in the IRF due to natural variability in the 4 × CO2 simulation, but the resulting errors
are small when projecting the response to smaller CO2 levels. We fit the IRF for the projection
onto the first EOF to semi-infinite diffusion as above, including a fit to the fast response for
precipitation. This is necessary as the assumption-free IRF estimates are limited to the duration
of the training simulations. The IRFs for the projections onto the second and higher EOFs decay
to zero before the end of the simulations and can be set to zero thereafter. The projected forced
response is the sum of the responses for each EOF.
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