This group is a fast-growing team of researchers working at the intersection of climate science and technology with a focus on the science and public policy of solar geoengineering under the leadership of David Keith, Professor of Applied Physics at Harvard’s School of Engineering and Applied Sciences and Professor of Public Policy at the Harvard Kennedy School.

Read more about us

Recent Publications

The Value of Information About Geoengineering and the Two-Sided Cost of Bias

Anthony R. Harding, Mariia Belaia, and David W. Keith. 6/14/2022. “The Value of Information About Geoengineering and the Two-Sided Cost of Bias.” Climate Policy, Pp. 1-11. Publisher's VersionAbstract
Solar geoengineering (SG) might be able to reduce climate risks if used to supplement emissions cuts and carbon removal. Yet, the wisdom of proceeding with research to reduce its uncertainties is disputed. Here, we use an integrated assessment model to estimate that the value of information that reduces uncertainty about SG efficacy. We find the value of reducing uncertainty by one-third by 2030 is around $4.5 trillion, most of which comes from reduced climate damages rather than reduced mitigation costs. Reducing uncertainty about SG efficacy is similar in value to reducing uncertainty about climate sensitivity. We analyse the cost of over-confidence about SG that causes too little emissions cuts and too much SG. Consistent with concerns about SG’s moral hazard problem, we find an over-confident bias is a serious and costly concern; but, we also find under-confidence that prematurely rules out SG can be roughly as costly. Biased judgments are costly in both directions. A coin has two sides. Our analysis quantitatively demonstrates the risk-risk trade-off around SG and reinforces the value of research that can reduce uncertainty.
Read more

Heat has larger impacts on labor in poorer areas

A. P. Behrer, R. J. Park, C. M. Golja, D. W. Keith, and G. Wagner. 9/15/2021. “Heat has larger impacts on labor in poorer areas.” Environmental Research Communications, 3, 095001. Publisher's VersionAbstract
Hotter temperature can reduce labor productivity, work hours, and labor income. The effects of heat are likely to be a joint consequence of both exposure and vulnerability. Here we explore the impacts of heat on labor income in the US, using regional wealth as a proxy for vulnerability. We find that one additional day >32 °C (90 °F) lowers annual payroll by 0.04%, equal to 2.1% of average weekly earnings. Accounting for humidity results in slightly more precise estimates. Proxying for wealth with dividend payments we find smaller impacts of heat in counties with higher average wealth. Temperature projections for 204050 suggest that earnings impacts may be 95% smaller for US counties in the richest decile relative to the poorest. Considering the within country distribution of vulnerability, in addition to exposure, to climate change could substantially change estimated within-country differences between the rich and poor in income losses from climate change.
Read more

An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols

Debra Weisentein, Daniele Visioni, Henning Franke, Ulrike Niemeier, Sandro Vattioni, Garbiel Chiodo, Thomas Peter, and David Keith. 3/4/2022. “An interactive stratospheric aerosol model intercomparison of solar geoengineering by stratospheric injection of SO2 or accumulation-mode sulfuric acid aerosols.” Atmospheric Chemistry and Physics, 22, 5, Pp. 2955-2973. Publisher's VersionAbstract
Studies of stratospheric solar geoengineering have tended to focus on modification of the sulfuric acid aerosol layer, and almost all climate model experiments that mechanistically increase the sulfuric acid aerosol burden assume injection of SO2. A key finding from these model studies is that the radiative forcing would increase sublinearly with increasing SO2 injection because most of the added sulfur increases the mass of existing particles, resulting in shorter aerosol residence times and aerosols that are above the optimal size for scattering. Injection of SO3 or H2SO4 from an aircraft in stratospheric flight is expected to produce particles predominantly in the accumulation-mode size range following microphysical processing within an expanding plume, and such injection may result in a smaller average stratospheric particle size, allowing a given injection of sulfur to produce more radiative forcing. We report the first multi-model intercomparison to evaluate this approach, which we label AM-H2SO4 injection. A coordinated multi-model experiment designed to represent this SO3- or H2SO4-driven geoengineering scenario was carried out with three interactive stratospheric aerosol microphysics models: the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM2) with the Whole Atmosphere Community Climate Model (WACCM) atmospheric configuration, the Max-Planck Institute’s middle atmosphere version of ECHAM5 with the HAM microphysical module (MAECHAM5-HAM) and ETH’s SOlar Climate Ozone Links with AER microphysics (SOCOL-AER) coordinated as a test-bed experiment within the Geoengineering Model Intercomparison Project (GeoMIP). The intercomparison explores how the injection of new accumulation-mode particles changes the large-scale particle size distribution and thus the overall radiative and dynamical response to stratospheric sulfur injection. Each model used the same injection scenarios testing AM-H2SO4 and SO2 injections at 5 and 25 Tg(S) yr−1 to test linearity and climate response sensitivity. All three models find that AM-H2SO4 injection increases the radiative efficacy, defined as the radiative forcing per unit of sulfur injected, relative to SO2 injection. Increased radiative efficacy means that when compared to the use of SO2 to produce the same radiative forcing, AM-H2SO4 emissions would reduce side effects of sulfuric acid aerosol geoengineering that are proportional to mass burden. The model studies were carried out with two different idealized geographical distributions of injection mass representing deployment scenarios with different objectives, one designed to force mainly the midlatitudes by injecting into two grid points at 30◦ N and 30◦ S, and the other designed to maximize aerosol residence time by injecting uniformly in the region between 30◦ S and 30◦ N. Analysis of aerosol size distributions in the perturbed stratosphere of the models shows that particle sizes evolve differently in response to concentrated versus dispersed injections depending on the form of the injected sulfur (SO2 gas or AM-H2SO4 particulate) and suggests that prior model results for concentrated injection of SO2 may be strongly dependent on model resolution. Differences among models arise from differences in aerosol formulation and differences in model dynamics, factors whose interplay cannot be easily untangled by this intercomparison.
Read more
  •  
  • 1 of 69
  • »
More