Academic Publications

Sebastian D. Eastham, David W. Keith, and Steven R. H. Barrett. 3/9/2018. “Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone.” Environmental Research Letters, 13, 3. Publisher's VersionAbstract
Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth's surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.
Kristina Mohlin, Jonathan R. Camuzeaux, Adrian Muller, Marius Schneider, and Gernot Wagner. 2/12/2018. “Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis.” Energy Policy, 116, Pp. 290–296. Publisher's VersionAbstract
This paper introduces an approach for separately quantifying the contributions from renewables in decomposition analysis. So far, decomposition analyses of the drivers of national CO2 emissions have typically considered the combined energy mix as an explanatory factor without an explicit consideration or separation of renewables. As the cost of renewables continues to decrease, it becomes increasingly relevant to track their role in CO2 emission trends. Index decomposition analysis, in particular, provides a simple approach for doing so using publicly available data. We look to the U.S. as a case study, highlighting differences with the more detailed but also more complex structural decomposition analysis. Between 2007 and 2013, U.S. CO2 emissions decreased by around 10%—a decline not seen since the oil crisis of 1979. Prior analyses have identified the shale gas boom and the economic recession as the main explanatory factors. However, by decomposing the fuel mix effect, we conclude that renewables played an equally important role as natural gas in reducing CO2 emissions between 2007 and 2013: renewables decreased total emissions by 2.3–3.3%, roughly matching the 2.5–3.6% contribution from the shift to natural gas, compared with 0.6–1.5% for nuclear energy.
J. Paul Kelleher and Gernot Wagner. 2/2018. “Ramsey discounting calls for subtracting climate damages from economic growth rates.” Applied Economics Letters. Publisher's VersionAbstract
The Ramsey equation ties the utility discount rate and the elasticity of marginal utility of consumption together with per capita consumption growth rates to calculate consumption discount rates. For many applications, per capita consumption growth rates can be approximated with per capita output growth rates. That approximation does not work for climate change, which drives an ever-increasing and increasingly uncertain wedge between output and consumption growth. NAS (2017), in a central recommendation and illustrative example, conflates the two. The correct, consumption-based discounting method generally decreases consumption discount rates and, thus, increases the resulting Social Cost of Carbon Dioxide (SC-CO2).
Zhen Dai, Debra Weisenstein, and David Keith. 1/2018. “Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering.” Geophysical Research Letters, 45. Publisher's VersionAbstract
We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.
Paul Bodnar, Caroline Ott, Rupert Edwards, Stephan Hoch, Emily F. McGlynn, and Gernot Wagner. 12/4/2017. “Underwriting 1.5°C: competitive approaches to financing accelerated climate change mitigation.” Climate Policy. Publisher's VersionAbstract

Delivering emission reductions consistent with a 1.5°C trajectory will require innovative public financial instruments designed to mobilize trillions of dollars of low-carbon private investment. Traditional public subsidy instruments such as grants and concessional loans, while critical to supporting nascent technologies or high-capital-cost projects, do not provide the price signals required to shift private investments towards low-carbon alternatives at a scale. Programmes that underwrite the value of emission reductions using auctioned price floors provide price certainty over long time horizons, thus improving the cost-effectiveness of limited public funds while also catalysing private investment.

Taking lessons from the World Bank’s Pilot Auction Facility, which supports methane and nitrous oxide mitigation projects, and the United Kingdom’s Contracts for Difference programme, which supports renewable energy deployment, we show that auctioned price floors can be applied to a variety of sectors with greater efficiency and scalability than traditional subsidy instruments. We explore how this new class of instrument can enhance the cost-effectiveness of carbon pricing and complementary policies needed to achieve a 1.5°C outcome, including through large-scale adoption by the Green Climate Fund and other international and domestic climate finance vehicles.

Key policy insights

  • Traditional public climate finance interventions such as grants and concessional loans have not mobilized private capital at the scale needed to decarbonize the world economy consistent with the 2°C target, much less 1.5°C, and will likely face ongoing constraints in the future.
  • Auctioned price floors – subsidies that offer a guaranteed price for future emission reductions – maximize climate impact per public dollar while incentivizing private investment in low-carbon technologies.
  • This new subsidy instrument, if applied at scale via the Green Climate Fund and other domestic and international climate finance vehicles, can promote private sector competition to bring down technology costs and drive innovation, thereby supporting a longer term transition to regulation and sector- or economy-wide carbon markets.
  • To facilitate the transition from public subsidy to the market-based support of climate mitigation, auctioned price floors should work in tandem with carbon pricing and complementary policies, using the same accounting and monitoring, reporting and verification toolkits.
Jonas Meckling, Thomas Sterner, and Gernot Wagner. 11/13/2017. “Policy sequencing toward decarbonization.” Nature Energy. Publisher's VersionAbstract
Many economists have long held that carbon pricing—either through a carbon tax or cap-and-trade—is the most cost-effective way to decarbonize energy systems, along with subsidies for basic research and development. Meanwhile, green innovation and industrial policies aimed at fostering low-carbon energy technologies have proliferated widely. Most of these predate direct carbon pricing. Low-carbon leaders such as California and the European Union (EU) have followed a distinct policy sequence that helps overcome some of the political challenges facing low-carbon policy by building economic interest groups in support of decarbonization and reducing the cost of technologies required for emissions reductions. However, while politically effective, this policy pathway faces significant challenges to environmental and cost effectiveness, including excess rent capture and lock-in. Here we discuss options for addressing these challenges under political constraints. As countries move toward deeper emissions cuts, combining and sequencing policies will prove critical to avoid environmental, economic, and political dead-ends in decarbonizing energy systems.
Dustin Tingley and Gernot Wagner. 10/31/2017. “Solar geoengineering and the chemtrails conspiracy on social media.” Palgrave Communications, 3, 12. Publisher's VersionAbstract
Discourse on social media of solar geoengineering has been rapidly increasing over the past decade, in line with increased attention by the scientific community and low but increasing awareness among the general public. The topic has also found increased attention online. But unlike scientific discourse, a majority of online discussion focuses on the so-called chemtrails conspiracy theory, the widely debunked idea that airplanes are spraying a toxic mix of chemicals through contrails, with supposed goals ranging from weather to mind control. This paper presents the results of a nationally representative 1000-subject poll part of the 36,000-subject 2016 Cooperative Congressional Election Study (CCES), and an analysis of the universe of social media mentions of geoengineering. The former shows ~ 10% of Americans declaring the chemtrails conspiracy as “completely” and a further ~ 20–30% as “somewhat” true, with no apparent difference by party affiliation or strength of partisanship. Conspiratorial views have accounted for ~ 60% of geoengineering discourse on social media over the past decade. Of that, Twitter has accounted for >90%, compared to ~ 75% of total geoengineering mentions. Further affinity analysis reveals a broad online community of conspiracy. Anonymity of social media appears to help its spread, so does the general ease of spreading unverified or outright false information. Online behavior has important real-world reverberations, with implications for climate science communication and policy.
David W. Keith, Gernot Wagner, and Claire L. Zabel. 9/1/2017. “Solar geoengineering reduces atmospheric carbon burden.” Nature Climate Change, 7, Pp. 617–619. Publisher's VersionAbstract

Solar geoengineering is no substitute for cutting emissions, but could nevertheless help reduce the atmospheric carbon burden. In the extreme, if solar geoengineering were used to hold radiative forcing constant under RCP8.5, the carbon burden may be reduced by ~100 GTC, equivalent to 12–26% of twenty-first-century emissions at a cost of under US$0.5 per tCO2.

Masahiro Sugiyama, Shinichiro Asayama, Atsushi Ishii, Takanobu Kosugi, John C. Moore, Jolene Lin, Penehuro F. Lefale, Wil Burns, Masatomo Fujiwara, Arunabha Ghosh, Joshua Horton, Atsushi Kurosawa, Andy Parker, Michael Thompson, Pak-Hang Wong, and Lili Xia. 7/4/2017. “The Asia-Pacific’s role in the emerging solar geoengineering debate.” Climatic Change. Publisher's VersionAbstract
Increasing interest in climate engineering in recent years has led to calls by the international research community for international research collaboration as well as global public engagement. But making such collaboration a reality is challenging. Here, we report the summary of a 2016 workshop on the significance and challenges of international collaboration on climate engineering research with a focus on the Asia-Pacific region. Because of the region’s interest in benefits and risks of climate engineering, there is a potential synergy between impact research on anthropogenic global warming and that on solar radiation management. Local researchers in the region can help make progress toward better understanding of impacts of solar radiation management. These activities can be guided by an ad hoc Asia-Pacific working group on climate engineering, a voluntary expert network. The working group can foster regional conversations in a sustained manner while contributing to capacity building. An important theme in the regional conversation is to develop effective practices of dialogues in light of local backgrounds such as cultural traditions and past experiences of large-scale technology development. Our recommendation merely portrays one of several possible ways forward, and it is our hope to stimulate the debate in the region.
Ilissa B. Ocko, Steven P. Hamburg, Daniel J. Jacob, David W. Keith, Nathaniel O. Keohane, Michael Oppenheimer, Joseph D. Roy-Mayhew, Daniel P. Schrag, and Stephen W. Pacala. 5/5/2017. “Unmask temporal trade-offs in climate policy debates.” Science, 356, 6337, Pp. 492-493. Publisher's VersionAbstract

Global warming potentials (GWPs) have become an essential element of climate policy and are built into legal structures that regulate greenhouse gas emissions. This is in spite of a well-known shortcoming: GWP hides trade-offs between short- and long-term policy objectives inside a single time scale of 100 or 20 years (1). The most common form, GWP100, focuses on the climate impact of a pulse emission over 100 years, diluting near-term effects and misleadingly implying that short-lived climate pollutants exert forcings in the long-term, long after they are removed from the atmosphere (2). Meanwhile, GWP20 ignores climate effects after 20 years. We propose that these time scales be ubiquitously reported as an inseparable pair, much like systolic-diastolic blood pressure and city-highway vehicle fuel economy, to make the climate effect of using one or the other time scale explicit. Policy-makers often treat a GWP as a value-neutral measure, but the time-scale choice is central to achieving specific objectives (2–4).

Jeremy Proville, Daniel Zavala-Araiza, and Gernot Wagner. 3/27/2017. “Night-time lights: A global, long term look at links to socio-economic trends.” PLoS ONE, 12, 3. Publisher's VersionAbstract
We use a parallelized spatial analytics platform to process the twenty-one year totality of the longest-running time series of night-time lights data—the Defense Meteorological Satellite Program (DMSP) dataset—surpassing the narrower scope of prior studies to assess changes in area lit of countries globally. Doing so allows a retrospective look at the global, long-term relationships between night-time lights and a series of socio-economic indicators. We find the strongest correlations with electricity consumption, CO2 emissions, and GDP, followed by population, CH4 emissions, N2O emissions, poverty (inverse) and F-gas emissions. Relating area lit to electricity consumption shows that while a basic linear model provides a good statistical fit, regional and temporal trends are found to have a significant impact.
Peter J. Irvine, Ben Kravitz, Mark G. Lawrence, Dieter Gerten, Cyril Caminade, Simon N.Gosling, Erica J. Hendy, Belay T. Kassie, W. Daniel Kissling, Helene Muri, Andreas Oschlies, and Steven J. Smith. 1/24/2017. “Towards a comprehensive climate impacts assessment of solar geoengineering.” Earth's Future, 5, Pp. 93–106. Publisher's VersionAbstract

Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current stateof knowledge about impacts of a solar-geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solargeoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solargeoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.

Jesse L. Reynolds, Andy Parker, and Peter Irvine. 12/13/2016. “Five solar geoengineering tropes that have outstayed their welcome.” Earth's Future, 4, Pp. 562–568. Publisher's VersionAbstract

In the last decade, solar geoengineering (solar radiation management, or SRM) has receivedincreasing consideration as a potential means to reduce risks of anthropogenic climate change. Some ideas regarding SRM that have been proposed have receded after being appropriately scrutinized, while others have strengthened through testing and critique. This process has improved the understanding ofSRM’s potential and limitations. However, several claims are frequently made in the academic and popular SRM discourses and, despite evidence to the contrary, pose the risk of hardening into accepted facts. Here, in order to foster a more productive and honest debate, we identify, describe, and refute five of the most problematic claims that are unsupported by existing evidence, unlikely to occur, or greatly exaggerated. These are: (A) once started, SRM cannot be stopped; (B) SRM is a right-wing project; (C) SRM wouldcost only a few billion dollars per year; (D) modeling studies indicate that SRM would disrupt monsoonprecipitation; and (E) there is an international prohibition on outdoors research. SRM is a controversial proposed set of technologies that could prove to be very helpful or very harmful, and it warrants vigorous and informed public debate. By highlighting and debunking some persistent but unsupported claims, this paper hopes to bring rigor to such discussions.

David Keith, Debra Weisenstein, John Dykema, and Frank Keutsch. 12/12/2016. “Stratospheric Solar Geoengineering without Ozone Loss.” PNAS. Publisher's VersionAbstract

Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of −1 W⋅m−2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y−1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

David W. Keith and Peter J. Irvine. 11/30/2016. “Solar geoengineering could substantially reduce climate risks — A research hypothesis for the next decade.” Earth's Future, 4, Pp. 549–559. Publisher's VersionAbstract

We offer a hypothesis that if solar geoengineering (SG) were deployed to offset half of the increase in global-mean temperature from the date of deployment using a technology and deployment method chosen to approximate a reduction in the solar constant then, over the 21st century, it would (a) substantially reduce the global aggregate risks of climate change, (b) without making any country worse off, and (c) with the aggregate risks from side-effects being small in comparison to the reduction in climate risks. We do not set out to demonstrate this hypothesis; rather we propose it with the goal of stimulating a strategic engagement of the SG research community with policy-relevant questions. We elaborate seven sub-hypotheses on the effects of our scenario for key risks of climate change that could be assessed in future modeling work. As an example, we provide a defence of one of our sub-hypotheses, that our scenario of SG would reduce the risk of drought in dry regions, but also identify issues that may undermine this sub-hypothesis and how future work could resolve this question. SG cannot substitute for emissions mitigation but it may be a useful supplement. It is our hope that scientific and technical research over the next decade focuses more closely on well-articulated variants of the key policy-relevant question: could SG be designed and deployed in such a way that it could substantially and equitably reduce climate risks?

Elizabeth T. Burns, Jane A. Flegal, David W. Keith, Aseem Mahajan, Dustin Tingley, and Gernot Wagner. 11/1/2016. “What do people think when they think about solar geoengineering? A review of empirical social science literature, and prospects for future research.” Earth's Future. Publisher's VersionAbstract

Public views and values about solar geoengineering should be incorporated in science-policy decisions, if decision makers want to act in the public interest. In reflecting on the past decade of research, we review around 30 studies investigating public familiarity with, and views about, solar geoengineering. A number of recurring patterns emerge: (1) general unfamiliarity with geoengineering among publics; (2) the importance of artifice versus naturalness; (3) some conditional support for certain kinds of research; and (4) nuanced findings on the “moral hazard” and “reverse moral hazard” hypotheses, with empirical support for each appearing under different circumstances and populations. We argue that in the coming decade, empirical social science research on solar geoengineering will be crucial, and should be integrated with physical scientific research.

John Dykema, David Keith, and Frank Keutsch. 7/30/2016. “Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment.” Geophysical Research Letters. Publisher's VersionAbstract

Side effects resulting from the deliberate injection of sulfate aerosols intended to partially offset climate change have motivated the investigation of alternatives, including solid aerosol materials. Sulfate aerosols warm the tropical tropopause layer, increasing the flux of water vapor into the stratosphere, accelerating ozone loss, and increasing radiative forcing. The high refractive index of some solid materials may lead to reduction in these risks. We present a new analysis of the scattering efficiency and absorption of a range of candidate solid aerosols. We utilize a comprehensive radiative transfer model driven by updated, physically consistent estimates of optical properties. We compute the potential increase in stratospheric water vapor and associated longwave radiative forcing. We find that the stratospheric heating calculated in this analysis indicates some materials to be substantially riskier than previous work. We also find that there are Earth-abundant materials that may reduce some principal known risks relative to sulfate aerosols.

Lee Miller, Vaclav Smil, Gernot Wagner, and David Keith. 7/18/2016. “Establishing practical estimates for city-integrated solar PV and wind.” Science eLetter. Publisher's Version
Pete Irvine, Ben Kravitz, Mark Lawrence, and Helene Muri. 7/2016. “An overview of the Earth system science of solar geoengineering.” Wiley Interdisciplinary Reviews: Climate Change. Publisher's VersionAbstract

Solar geoengineering has been proposed as a means to cool the Earth by increasing the reflection of sunlight back to space, for example, by injecting reflective aerosol particles (or their precursors) into the lower stratosphere. Such proposed techniques would not be able to substitute for mitigation of greenhouse gas (GHG) emissions as a response to the risks of climate change, as they would only mask some of the effects of global warming. They might, however, eventually be applied as a complementary approach to reduce climate risks. Thus, the Earth system consequences of solar geoengineering are central to understanding its potentials and risks. Here we review the state-of-the-art knowledge about stratospheric sulfate aerosol injection and an idealized proxy for this, ‘sunshade geoengineering,’ in which the intensity of incoming sunlight is directly reduced in models. Studies are consistent in suggesting that sunshade geoengineering and stratospheric aerosol injection would generally offset the climate effects of elevated GHG concentrations. However, it is clear that a solar geoengineered climate would be novel in some respects, one example being a notably reduced hydrological cycle intensity. Moreover, we provide an overview of nonclimatic aspects of the response to stratospheric aerosol injection, for example, its effect on ozone, and the uncertainties around its consequences. We also consider the issues raised by the partial control over the climate that solar geoengineering would allow. Finally, this overview highlights some key research gaps in need of being resolved to provide sound basis for guidance of future decisions around solar geoengineering.

Robert E. Kopp, Rachael Shwom, Gernot Wagner, and Jiacan Yuan. 7/2016. “Tipping elements and climate-economic shocks: Pathways toward integrated assessment.” Earth's Future. Publisher's VersionAbstract

The literature on the costs of climate change often draws a link between climatic ‘tipping points’ and large economic shocks, frequently called ‘catastrophes’. The phrase ‘tipping points’ in this context can be misleading. In popular and social scientific discourse, ‘tipping points’ involve abrupt state changes. For some climatic ‘tipping points,’ the commitment to a state change may occur abruptly, but the change itself may be rate-limited and take centuries or longer to realize. Additionally, the connection between climatic ‘tipping points’ and economic losses is tenuous, though emerging empirical and process-model-based tools provide pathways for investigating it. We propose terminology to clarify the distinction between ‘tipping points’ in the popular sense, the critical thresholds exhibited by climatic and social ‘tipping elements,’ and ‘economic shocks’. The last may be associated with tipping elements, gradual climate change, or non-climatic triggers. We illustrate our proposed distinctions by surveying the literature on climatic tipping elements, climatically sensitive social tipping elements, and climate-economic shocks, and we propose a research agenda to advance the integrated assessment of all three.