This group is a fast-growing team of researchers working at the intersection of climate science and technology with a focus on the science and public policy of solar geoengineering under the leadership of David Keith, Professor of Applied Physics at Harvard’s School of Engineering and Applied Sciences and Professor of Public Policy at the Harvard Kennedy School.

Read more about us

Recent Publications

Elicitation of US and Chinese expert judgments show consistent views on solar geoengineering

Zhen Dai, Elizabeth T. Burns, Peter J. Irvine, Dustin H. Tingley, Jianhua Xu, and David W. Keith. 2021. “Elicitation of US and Chinese expert judgments show consistent views on solar geoengineering.” Humanities and Social Sciences Communications, 8, 1, Pp. 1–9. Publisher's VersionAbstract
Expert judgments on solar geoengineering (SG) inform policy decisions and influence public opinions. We performed face-to-face interviews using formal expert elicitation methods with 13 US and 13 Chinese climate experts randomly selected from IPCC authors or supplemented by snowball sampling. We compare their judgments on climate change, SG research, governance, and deployment. In contrast to existing literature that often stress factors that might differentiate China from western democracies on SG, we found few significant differences between quantitative judgments of US and Chinese experts. US and Chinese experts differed on topics, such as desired climate scenario and the preferred venue for international regulation of SG, providing some insight into divergent judgments that might shape future negotiations about SG policy. We also gathered closed-form survey results from 19 experts with \textgreater10 publications on SG. Both expert groups supported greatly increased research, recommending SG research funding of \textasciitilde5% on average (10th–90th percentile range was 1–10%) of climate science budgets compared to actual budgets of \textless0.3% in 2018. Climate experts chose far less SG deployment in future climate policies than did SG experts.
Read more

Solar geoengineering research on the U.S. policy agenda: when might its time come?

Tyler Felgenhauer, Joshua Horton, and David Keith. 2021. “Solar geoengineering research on the U.S. policy agenda: when might its time come?” Environmental Politics, Pp. 1–21. Publisher's VersionAbstract
Solar geoengineering (SG) may be a helpful tool to reduce harms from climate change, yet further research into its potential benefits and risks must occur prior to any implementation. So far, however, organized research on SG has been absent from the U.S. national policy agenda. We apply the Multiple Streams Approach analytical framework to explain why a U.S. federal SG research program has failed to materialize up to now, and to consider how one might emerge in the future. We argue that establishing a federal program will require the formation of an advocacy coalition within the political arena that is prepared to support such a policy objective. A coalition favoring federal research on SG does not presently exist, yet the potential nucleus of a future political grouping is evident in the handful of ‘pragmatist’ environmental organizations that have expressed conditional support for expanded research.
Read more

Solar geoengineering can alleviate climate change pressures on crop yields

Yuanchao Fan, Jerry Tjiputra, Helene Muri, Danica Lombardozzi, Chang-Eui Park, Shengjun Wu, and David Keith. 2021. “Solar geoengineering can alleviate climate change pressures on crop yields.” Nature Food, 2, 5, Pp. 373–381. Publisher's VersionAbstract
Solar geoengineering (SG) and CO2 emissions reduction can each alleviate anthropogenic climate change, but their impacts on food security are not yet fully understood. Using an advanced crop model within an Earth system model, we analysed the yield responses of six major crops to three SG technologies (SGs) and emissions reduction when they provide roughly the same reduction in radiative forcing and assume the same land use. We found sharply distinct yield responses to changes in radiation, moisture and CO2, but comparable significant cooling benefits for crop yields by all four methods. Overall, global yields increase \textasciitilde10% under the three SGs and decrease 5% under emissions reduction, the latter primarily due to reduced CO2 fertilization, relative to business as usual by the late twenty-first century. Relative humidity dominates the hydrological effect on yields of rainfed crops, with little contribution from precipitation. The net insolation effect is negligible across all SGs, contrary to previous findings.
Read more
  •  
  • 1 of 68
  • »
More