Solar Geoengineering

David Keith, Debra Weisenstein, John Dykema, and Frank Keutsch. 12/12/2016. “Stratospheric Solar Geoengineering without Ozone Loss.” PNAS. Publisher's Version Abstract

Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of −1 W⋅m−2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y−1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

Elizabeth T. Burns, Jane A. Flegal, David W. Keith, Aseem Mahajan, Dustin Tingley, and Gernot Wagner. 11/1/2016. “What do people think when they think about solar geoengineering? A review of empirical social science literature, and prospects for future research.” Earth's Future. Publisher's Version Abstract

Public views and values about solar geoengineering should be incorporated in science-policy decisions, if decision makers want to act in the public interest. In reflecting on the past decade of research, we review around 30 studies investigating public familiarity with, and views about, solar geoengineering. A number of recurring patterns emerge: (1) general unfamiliarity with geoengineering among publics; (2) the importance of artifice versus naturalness; (3) some conditional support for certain kinds of research; and (4) nuanced findings on the “moral hazard” and “reverse moral hazard” hypotheses, with empirical support for each appearing under different circumstances and populations. We argue that in the coming decade, empirical social science research on solar geoengineering will be crucial, and should be integrated with physical scientific research.

Robert E. Kopp, Rachael Shwom, Gernot Wagner, and Jiacan Yuan. 7/2016. “Tipping elements and climate-economic shocks: Pathways toward integrated assessment.” Earth's Future. Publisher's Version Abstract

The literature on the costs of climate change often draws a link between climatic ‘tipping points’ and large economic shocks, frequently called ‘catastrophes’. The phrase ‘tipping points’ in this context can be misleading. In popular and social scientific discourse, ‘tipping points’ involve abrupt state changes. For some climatic ‘tipping points,’ the commitment to a state change may occur abruptly, but the change itself may be rate-limited and take centuries or longer to realize. Additionally, the connection between climatic ‘tipping points’ and economic losses is tenuous, though emerging empirical and process-model-based tools provide pathways for investigating it. We propose terminology to clarify the distinction between ‘tipping points’ in the popular sense, the critical thresholds exhibited by climatic and social ‘tipping elements,’ and ‘economic shocks’. The last may be associated with tipping elements, gradual climate change, or non-climatic triggers. We illustrate our proposed distinctions by surveying the literature on climatic tipping elements, climatically sensitive social tipping elements, and climate-economic shocks, and we propose a research agenda to advance the integrated assessment of all three.

John Dykema, David Keith, and Frank Keutsch. 7/30/2016. “Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment.” Geophysical Research Letters. Publisher's Version Abstract

Side effects resulting from the deliberate injection of sulfate aerosols intended to partially offset climate change have motivated the investigation of alternatives, including solid aerosol materials. Sulfate aerosols warm the tropical tropopause layer, increasing the flux of water vapor into the stratosphere, accelerating ozone loss, and increasing radiative forcing. The high refractive index of some solid materials may lead to reduction in these risks. We present a new analysis of the scattering efficiency and absorption of a range of candidate solid aerosols. We utilize a comprehensive radiative transfer model driven by updated, physically consistent estimates of optical properties. We compute the potential increase in stratospheric water vapor and associated longwave radiative forcing. We find that the stratospheric heating calculated in this analysis indicates some materials to be substantially riskier than previous work. We also find that there are Earth-abundant materials that may reduce some principal known risks relative to sulfate aerosols.

Pete Irvine, Ben Kravitz, Mark Lawrence, and Helene Muri. 7/2016. “An overview of the Earth system science of solar geoengineering.” Wiley Interdisciplinary Reviews: Climate Change. Publisher's Version Abstract

Solar geoengineering has been proposed as a means to cool the Earth by increasing the reflection of sunlight back to space, for example, by injecting reflective aerosol particles (or their precursors) into the lower stratosphere. Such proposed techniques would not be able to substitute for mitigation of greenhouse gas (GHG) emissions as a response to the risks of climate change, as they would only mask some of the effects of global warming. They might, however, eventually be applied as a complementary approach to reduce climate risks. Thus, the Earth system consequences of solar geoengineering are central to understanding its potentials and risks. Here we review the state-of-the-art knowledge about stratospheric sulfate aerosol injection and an idealized proxy for this, ‘sunshade geoengineering,’ in which the intensity of incoming sunlight is directly reduced in models. Studies are consistent in suggesting that sunshade geoengineering and stratospheric aerosol injection would generally offset the climate effects of elevated GHG concentrations. However, it is clear that a solar geoengineered climate would be novel in some respects, one example being a notably reduced hydrological cycle intensity. Moreover, we provide an overview of nonclimatic aspects of the response to stratospheric aerosol injection, for example, its effect on ozone, and the uncertainties around its consequences. We also consider the issues raised by the partial control over the climate that solar geoengineering would allow. Finally, this overview highlights some key research gaps in need of being resolved to provide sound basis for guidance of future decisions around solar geoengineering.

Pages