Energy

Dharik Sanchan Mallapragada, Emre Gençer, Patrick Insinger, David Keith, and Francis Martin O’Sullivan. 8/19/2020. “Can Industrial-Scale Solar Hydrogen Supplied from Commodity Technologies Be Cost Competitive by 2030?” Cell Reports Physical Science, 100174. Publisher's VersionAbstract
Expanding decarbonization efforts beyond the power sector are contingent on cost-effective production of energy carriers, like H2, with near-zero life-cycle carbon emissions. Here, we assess the levelized cost of continuous H2 supply (95% availability) at industrial-scale quantities (100 tonnes/day) in 2030 from integrating commodity technologies for solar photovoltaics, electrolysis, and energy storage. Our approach relies on modeling the least-cost plant design and operation that optimize component sizes while adhering to hourly solar availability, production requirements, and component inter-temporal operating constraints. We apply the model to study H2 production costs spanning the continental United States and, through extensive sensitivity analysis, explore system configurations that can achieve $2.5/kg levelized costs or less for a range of plausible 2030 technology projections at high-irradiance locations. Notably, we identify potential sites and system configurations where PV-electrolytic H2 could substitute natural gas-derived H2 at avoided CO2 costs (%$120/ton), similar to the cost of deploying carbon capture and sequestration

Two new papers examine how turbine-atmosphere interactions shape wind-power’s environmental impacts

By David Keith

Today Lee Miller and I published a pair of papers on the interaction between wind turbines and the atmosphere. “Observation-based solar and wind power capacity factors and power densities” in Environmental Research Letters, and “Climatic impacts of wind power” in Joule. (Many thanks to the journals for arranging simultaneous publication.) Don’t miss Lee’s video abstracts for Joule and ERL.... Read more about Two new papers examine how turbine-atmosphere interactions shape wind-power’s environmental impacts

Lee Miller and David Keith. 10/4/2018. “Observation-based solar and wind power capacity factors and powerdensities.” Environmental Research Letters, 13. Publisher's VersionAbstract

Power density is the rate of energy generation per unit of land surface area occupied by an energy system. The power density of low-carbon energy sources will play an important role in mediating the environmental consequences of energy system decarbonization as the world transitions away from high power-density fossil fuels. All else equal, lower power densities mean larger land and environmental footprints. The power density of solar and wind power remain surprisingly uncertain: estimates of realizable generation rates per unit area for wind and solar power span 0.3–47Wem−2 and 10–120Wem−2 respectively. We refine this range using US data from 1990–2016. We estimate wind power density from primary data, and solar power density from primary plant-level data and prior datasets on capacity density. The mean power density of 411 onshore wind power plants in 2016 was 0.50Wem−2. Wind plants with the largest areas have the lowest power densities. Wind power capacity factors are increasing, but that increase is associated with a decrease in capacity densities, so power densities are stable or declining. If wind power expands away from the best locations and the areas of wind power plants keep increasing, it seems likely that wind’s power density will decrease as total wind generation increases. The mean 2016 power density of 1150 solar power plants was 5.4Wem−2. Solar capacity factors and (likely) power densities are increasing with time driven, in part, by improved panel efficiencies. Wind power has a 10-fold lower power density than solar, but wind power installations directly occupy much less of the land within their boundaries. The environmental and social consequences of these divergent land occupancy patterns need further study.

Lee Miller and David Keith. 10/4/2018. “Climatic Impacts of Wind Power.” Joule, 2. Publisher's VersionAbstract

We find that generating today’s US electricity demand (0.5 TWe) with wind power would warm Continental US surface temperatures by 0.24C. Warming arises, in part, from turbines redistributing heat by mixing the boundary layer. Modeled diurnal and seasonal temperature differences are roughly consistent with recent observations of warming at wind farms, reflecting a coherent mechanistic understanding for how wind turbines alter climate. The warming effect is: small compared with projections of 21st century warming, approximately equivalent to the reduced warming achieved by decarbonizing global electricity generation, and large compared with the reduced warming achieved by decarbonizing US electricity with wind. For the same generation rate, the climatic impacts from solar photovoltaic systems are about ten times smaller than wind systems. Wind’s overall environmental impacts are surely less than fossil energy. Yet, as the energy system is decarbonized, decisions between wind and solar should be informed by estimates of their climate impacts.

Lee Miller and Axel Kleidon. 2016. “Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits.” Proceedings of the National Academy of Sciences. Publisher's VersionAbstract

Wind turbines generate electricity by removing kinetic energy from the atmosphere. Large numbers of wind turbines are likely to reduce wind speeds, which lowers estimates of electricity generation from what would be presumed from unaffected conditions. Here, we test how well wind power limits that account for this effect can be estimated without explicitly simulating atmospheric dynamics. We first use simulations with an atmospheric general circulation model (GCM) that explicitly simulates the effects of wind turbines to derive wind power limits (GCM estimate), and compare them to a simple approach derived from the climatological conditions without turbines [vertical kinetic energy (VKE) estimate]. On land, we find strong agreement between the VKE and GCM estimates with respect to electricity generation rates (0.32 and 0.37 We m−2) and wind speed reductions by 42 and 44%. Over ocean, the GCM estimate is about twice the VKE estimate (0.59 and 0.29 We m−2) and yet with comparable wind speed reductions (50 and 42%). We then show that this bias can be corrected by modifying the downward momentum flux to the surface. Thus, large-scale limits to wind power use can be derived from climatological conditions without explicitly simulating atmospheric dynamics. Consistent with the GCM simulations, the approach estimates that only comparatively few land areas are suitable to generate more than 1 We m−2 of electricity and that larger deployment scales are likely to reduce the expected electricity generation rate of each turbine. We conclude that these atmospheric effects are relevant for planning the future expansion of wind power.

Pages