Experimental reaction rates constrain estimates of ozone response to calcium carbonate geoengineering

Citation:

Zhen Dai, Debra K. Weisenstein, Frank N. Keutsch, and David W. Keith. 12/2020. “Experimental reaction rates constrain estimates of ozone response to calcium carbonate geoengineering.” Communications Earth & Environment, 1, 63. Publisher's Version
s43247-020-00058-7_1.pdf984 KB

Abstract:

Stratospheric solar geoengineering (SG) would impact ozone by heterogeneous chemistry. Evaluating these risks and methods to reduce them will require both laboratory and modeling work. Prior model-only work showed that CaCO3 particles would reduce, or even reverse ozone depletion. We reduce uncertainties in ozone response to CaCO3 via experimental determination of uptake coefficients and model evaluation. Specifically, we measure uptake coefficients of HCl and HNO3 on CaCO3 as well as HNO3 and ClONO2 on CaCl2 at stratospheric temperatures using a flow tube setup and a flask experiment that determines cumulative long-term uptake of HCl on CaCO3. We find that particle ageing causes significant decreases in uptake coefficients on CaCO3. We model ozone response incorporating the experimental uptake coefficients in the AER-2D model. With our new empirical reaction model, the global mean ozone column is reduced by up to 3%, whereas the previous work predicted up to 27% increase for the same SG scenario. This result is robust under our experimental uncertainty and many other assumptions. We outline systematic uncertainties that remain and provide three examples of experiments that might further reduce uncertainties of CaCO3 SG. Finally, we highlight the importance of the link between experiments and models in studies of SG.
Last updated on 05/24/2021