David Keith

Ilissa B. Ocko, Steven P. Hamburg, Daniel J. Jacob, David W. Keith, Nathaniel O. Keohane, Michael Oppenheimer, Joseph D. Roy-Mayhew, Daniel P. Schrag, and Stephen W. Pacala. 5/5/2017. “Unmask temporal trade-offs in climate policy debates.” Science, 6337, 356: 492-493. Publisher's Version Abstract

Global warming potentials (GWPs) have become an essential element of climate policy and are built into legal structures that regulate greenhouse gas emissions. This is in spite of a well-known shortcoming: GWP hides trade-offs between short- and long-term policy objectives inside a single time scale of 100 or 20 years (1). The most common form, GWP100, focuses on the climate impact of a pulse emission over 100 years, diluting near-term effects and misleadingly implying that short-lived climate pollutants exert forcings in the long-term, long after they are removed from the atmosphere (2). Meanwhile, GWP20 ignores climate effects after 20 years. We propose that these time scales be ubiquitously reported as an inseparable pair, much like systolic-diastolic blood pressure and city-highway vehicle fuel economy, to make the climate effect of using one or the other time scale explicit. Policy-makers often treat a GWP as a value-neutral measure, but the time-scale choice is central to achieving specific objectives (2–4).

We offer a hypothesis that if solar geoengineering (SG) were deployed to offset half of the increase in global-mean temperature from the date of deployment using a technology and deployment method chosen to approximate a reduction in the solar constant then, over the 21st century, it would (a) substantially reduce the global aggregate risks of climate change, (b) without making any country worse off, and (c) with the aggregate risks from side-effects being small in comparison to the reduction in climate risks. We do not set out to demonstrate this hypothesis; rather we propose it with the goal of stimulating a strategic engagement of the SG research community with policy-relevant questions. We elaborate seven sub-hypotheses on the effects of our scenario for key risks of climate change that could be assessed in future modeling work. As an example, we provide a defence of one of our sub-hypotheses, that our scenario of SG would reduce the risk of drought in dry regions, but also identify issues that may undermine this sub-hypothesis and how future work could resolve this question. SG cannot substitute for emissions mitigation but it may be a useful supplement. It is our hope that scientific and technical research over the next decade focuses more closely on well-articulated variants of the key policy-relevant question: could SG be designed and deployed in such a way that it could substantially and equitably reduce climate risks?

David Keith, Debra Weisenstein, John Dykema, and Frank Keutsch. 12/12/2016. “Stratospheric Solar Geoengineering without Ozone Loss.” PNAS. Publisher's Version Abstract

Injecting sulfate aerosol into the stratosphere, the most frequently analyzed proposal for solar geoengineering, may reduce some climate risks, but it would also entail new risks, including ozone loss and heating of the lower tropical stratosphere, which, in turn, would increase water vapor concentration causing additional ozone loss and surface warming. We propose a method for stratospheric aerosol climate modification that uses a solid aerosol composed of alkaline metal salts that will convert hydrogen halides and nitric and sulfuric acids into stable salts to enable stratospheric geoengineering while reducing or reversing ozone depletion. Rather than minimizing reactive effects by reducing surface area using high refractive index materials, this method tailors the chemical reactivity. Specifically, we calculate that injection of calcite (CaCO3) aerosol particles might reduce net radiative forcing while simultaneously increasing column ozone toward its preanthropogenic baseline. A radiative forcing of −1 W⋅m−2, for example, might be achieved with a simultaneous 3.8% increase in column ozone using 2.1 Tg⋅y−1 of 275-nm radius calcite aerosol. Moreover, the radiative heating of the lower stratosphere would be roughly 10-fold less than if that same radiative forcing had been produced using sulfate aerosol. Although solar geoengineering cannot substitute for emissions cuts, it may supplement them by reducing some of the risks of climate change. Further research on this and similar methods could lead to reductions in risks and improved efficacy of solar geoengineering methods.

Elizabeth T. Burns, Jane A. Flegal, David W. Keith, Aseem Mahajan, Dustin Tingley, and Gernot Wagner. 11/1/2016. “What do people think when they think about solar geoengineering? A review of empirical social science literature, and prospects for future research.” Earth's Future. Publisher's Version Abstract

Public views and values about solar geoengineering should be incorporated in science-policy decisions, if decision makers want to act in the public interest. In reflecting on the past decade of research, we review around 30 studies investigating public familiarity with, and views about, solar geoengineering. A number of recurring patterns emerge: (1) general unfamiliarity with geoengineering among publics; (2) the importance of artifice versus naturalness; (3) some conditional support for certain kinds of research; and (4) nuanced findings on the “moral hazard” and “reverse moral hazard” hypotheses, with empirical support for each appearing under different circumstances and populations. We argue that in the coming decade, empirical social science research on solar geoengineering will be crucial, and should be integrated with physical scientific research.

Pages